mirror of
https://github.com/YunoHost-Apps/bozon_ynh.git
synced 2024-09-03 18:16:09 +02:00
760 lines
26 KiB
JavaScript
760 lines
26 KiB
JavaScript
/* qr.js -- QR code generator in Javascript (revision 2011-01-19)
|
|
* Written by Kang Seonghoon <public+qrjs@mearie.org>.
|
|
*
|
|
* This source code is in the public domain; if your jurisdiction does not
|
|
* recognize the public domain the terms of Creative Commons CC0 license
|
|
* apply. In the other words, you can always do what you want.
|
|
*/
|
|
|
|
var QRCode = (function(){
|
|
|
|
/* Quick overview: QR code composed of 2D array of modules (a rectangular
|
|
* area that conveys one bit of information); some modules are fixed to help
|
|
* the recognition of the code, and remaining data modules are further divided
|
|
* into 8-bit code words which are augumented by Reed-Solomon error correcting
|
|
* codes (ECC). There could be multiple ECCs, in the case the code is so large
|
|
* that it is helpful to split the raw data into several chunks.
|
|
*
|
|
* The number of modules is determined by the code's "version", ranging from 1
|
|
* (21x21) to 40 (177x177). How many ECC bits are used is determined by the
|
|
* ECC level (L/M/Q/H). The number and size (and thus the order of generator
|
|
* polynomial) of ECCs depend to the version and ECC level.
|
|
*/
|
|
|
|
// per-version information (cf. JIS X 0510:2004 pp. 30--36, 71)
|
|
//
|
|
// [0]: the degree of generator polynomial by ECC levels
|
|
// [1]: # of code blocks by ECC levels
|
|
// [2]: left-top positions of alignment patterns
|
|
//
|
|
// the number in this table (in particular, [0]) does not exactly match with
|
|
// the numbers in the specficiation. see augumenteccs below for the reason.
|
|
var VERSIONS = [
|
|
null,
|
|
[[10, 7,17,13], [ 1, 1, 1, 1], []],
|
|
[[16,10,28,22], [ 1, 1, 1, 1], [4,16]],
|
|
[[26,15,22,18], [ 1, 1, 2, 2], [4,20]],
|
|
[[18,20,16,26], [ 2, 1, 4, 2], [4,24]],
|
|
[[24,26,22,18], [ 2, 1, 4, 4], [4,28]],
|
|
[[16,18,28,24], [ 4, 2, 4, 4], [4,32]],
|
|
[[18,20,26,18], [ 4, 2, 5, 6], [4,20,36]],
|
|
[[22,24,26,22], [ 4, 2, 6, 6], [4,22,40]],
|
|
[[22,30,24,20], [ 5, 2, 8, 8], [4,24,44]],
|
|
[[26,18,28,24], [ 5, 4, 8, 8], [4,26,48]],
|
|
[[30,20,24,28], [ 5, 4,11, 8], [4,28,52]],
|
|
[[22,24,28,26], [ 8, 4,11,10], [4,30,56]],
|
|
[[22,26,22,24], [ 9, 4,16,12], [4,32,60]],
|
|
[[24,30,24,20], [ 9, 4,16,16], [4,24,44,64]],
|
|
[[24,22,24,30], [10, 6,18,12], [4,24,46,68]],
|
|
[[28,24,30,24], [10, 6,16,17], [4,24,48,72]],
|
|
[[28,28,28,28], [11, 6,19,16], [4,28,52,76]],
|
|
[[26,30,28,28], [13, 6,21,18], [4,28,54,80]],
|
|
[[26,28,26,26], [14, 7,25,21], [4,28,56,84]],
|
|
[[26,28,28,30], [16, 8,25,20], [4,32,60,88]],
|
|
[[26,28,30,28], [17, 8,25,23], [4,26,48,70,92]],
|
|
[[28,28,24,30], [17, 9,34,23], [4,24,48,72,96]],
|
|
[[28,30,30,30], [18, 9,30,25], [4,28,52,76,100]],
|
|
[[28,30,30,30], [20,10,32,27], [4,26,52,78,104]],
|
|
[[28,26,30,30], [21,12,35,29], [4,30,56,82,108]],
|
|
[[28,28,30,28], [23,12,37,34], [4,28,56,84,112]],
|
|
[[28,30,30,30], [25,12,40,34], [4,32,60,88,116]],
|
|
[[28,30,30,30], [26,13,42,35], [4,24,48,72,96,120]],
|
|
[[28,30,30,30], [28,14,45,38], [4,28,52,76,100,124]],
|
|
[[28,30,30,30], [29,15,48,40], [4,24,50,76,102,128]],
|
|
[[28,30,30,30], [31,16,51,43], [4,28,54,80,106,132]],
|
|
[[28,30,30,30], [33,17,54,45], [4,32,58,84,110,136]],
|
|
[[28,30,30,30], [35,18,57,48], [4,28,56,84,112,140]],
|
|
[[28,30,30,30], [37,19,60,51], [4,32,60,88,116,144]],
|
|
[[28,30,30,30], [38,19,63,53], [4,28,52,76,100,124,148]],
|
|
[[28,30,30,30], [40,20,66,56], [4,22,48,74,100,126,152]],
|
|
[[28,30,30,30], [43,21,70,59], [4,26,52,78,104,130,156]],
|
|
[[28,30,30,30], [45,22,74,62], [4,30,56,82,108,134,160]],
|
|
[[28,30,30,30], [47,24,77,65], [4,24,52,80,108,136,164]],
|
|
[[28,30,30,30], [49,25,81,68], [4,28,56,84,112,140,168]]];
|
|
|
|
// mode constants (cf. Table 2 in JIS X 0510:2004 p. 16)
|
|
var MODE_TERMINATOR = 0;
|
|
var MODE_NUMERIC = 1, MODE_ALPHANUMERIC = 2, MODE_OCTET = 4, MODE_KANJI = 8;
|
|
|
|
// validation regexps
|
|
var NUMERIC_REGEXP = /^\d*$/;
|
|
var ALPHANUMERIC_REGEXP = /^[A-Za-z0-9 $%*+\-./:]*$/;
|
|
var ALPHANUMERIC_OUT_REGEXP = /^[A-Z0-9 $%*+\-./:]*$/;
|
|
|
|
// ECC levels (cf. Table 22 in JIS X 0510:2004 p. 45)
|
|
var ECCLEVEL_L = 1, ECCLEVEL_M = 0, ECCLEVEL_Q = 3, ECCLEVEL_H = 2;
|
|
|
|
// GF(2^8)-to-integer mapping with a reducing polynomial x^8+x^4+x^3+x^2+1
|
|
// invariant: GF256_MAP[GF256_INVMAP[i]] == i for all i in [1,256)
|
|
var GF256_MAP = [], GF256_INVMAP = [-1];
|
|
for (var i = 0, v = 1; i < 255; ++i) {
|
|
GF256_MAP.push(v);
|
|
GF256_INVMAP[v] = i;
|
|
v = (v * 2) ^ (v >= 128 ? 0x11d : 0);
|
|
}
|
|
|
|
// generator polynomials up to degree 30
|
|
// (should match with polynomials in JIS X 0510:2004 Appendix A)
|
|
//
|
|
// generator polynomial of degree K is product of (x-\alpha^0), (x-\alpha^1),
|
|
// ..., (x-\alpha^(K-1)). by convention, we omit the K-th coefficient (always 1)
|
|
// from the result; also other coefficients are written in terms of the exponent
|
|
// to \alpha to avoid the redundant calculation. (see also calculateecc below.)
|
|
var GF256_GENPOLY = [[]];
|
|
for (var i = 0; i < 30; ++i) {
|
|
var prevpoly = GF256_GENPOLY[i], poly = [];
|
|
for (var j = 0; j <= i; ++j) {
|
|
var a = (j < i ? GF256_MAP[prevpoly[j]] : 0);
|
|
var b = GF256_MAP[(i + (prevpoly[j-1] || 0)) % 255];
|
|
poly.push(GF256_INVMAP[a ^ b]);
|
|
}
|
|
GF256_GENPOLY.push(poly);
|
|
}
|
|
|
|
// alphanumeric character mapping (cf. Table 5 in JIS X 0510:2004 p. 19)
|
|
var ALPHANUMERIC_MAP = {};
|
|
for (var i = 0; i < 45; ++i) {
|
|
ALPHANUMERIC_MAP['0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:'.charAt(i)] = i;
|
|
}
|
|
|
|
// mask functions in terms of row # and column #
|
|
// (cf. Table 20 in JIS X 0510:2004 p. 42)
|
|
var MASKFUNCS = [
|
|
function(i,j) { return (i+j) % 2 == 0; },
|
|
function(i,j) { return i % 2 == 0; },
|
|
function(i,j) { return j % 3 == 0; },
|
|
function(i,j) { return (i+j) % 3 == 0; },
|
|
function(i,j) { return (((i/2)|0) + ((j/3)|0)) % 2 == 0; },
|
|
function(i,j) { return (i*j) % 2 + (i*j) % 3 == 0; },
|
|
function(i,j) { return ((i*j) % 2 + (i*j) % 3) % 2 == 0; },
|
|
function(i,j) { return ((i+j) % 2 + (i*j) % 3) % 2 == 0; }];
|
|
|
|
// returns true when the version information has to be embeded.
|
|
var needsverinfo = function(ver) { return ver > 6; };
|
|
|
|
// returns the size of entire QR code for given version.
|
|
var getsizebyver = function(ver) { return 4 * ver + 17; };
|
|
|
|
// returns the number of bits available for code words in this version.
|
|
var nfullbits = function(ver) {
|
|
/*
|
|
* |<--------------- n --------------->|
|
|
* | |<----- n-17 ---->| |
|
|
* +-------+ ///+-------+ ----
|
|
* | | ///| | ^
|
|
* | 9x9 | @@@@@ ///| 9x8 | |
|
|
* | | # # # @5x5@ # # # | | |
|
|
* +-------+ @@@@@ +-------+ |
|
|
* # ---|
|
|
* ^ |
|
|
* # |
|
|
* @@@@@ @@@@@ @@@@@ | n
|
|
* @5x5@ @5x5@ @5x5@ n-17
|
|
* @@@@@ @@@@@ @@@@@ | |
|
|
* # | |
|
|
* ////// v |
|
|
* //////# ---|
|
|
* +-------+ @@@@@ @@@@@ |
|
|
* | | @5x5@ @5x5@ |
|
|
* | 8x9 | @@@@@ @@@@@ |
|
|
* | | v
|
|
* +-------+ ----
|
|
*
|
|
* when the entire code has n^2 modules and there are m^2-3 alignment
|
|
* patterns, we have:
|
|
* - 225 (= 9x9 + 9x8 + 8x9) modules for finder patterns and
|
|
* format information;
|
|
* - 2n-34 (= 2(n-17)) modules for timing patterns;
|
|
* - 36 (= 3x6 + 6x3) modules for version information, if any;
|
|
* - 25m^2-75 (= (m^2-3)(5x5)) modules for alignment patterns
|
|
* if any, but 10m-20 (= 2(m-2)x5) of them overlaps with
|
|
* timing patterns.
|
|
*/
|
|
var v = VERSIONS[ver];
|
|
var nbits = 16*ver*ver + 128*ver + 64; // finder, timing and format info.
|
|
if (needsverinfo(ver)) nbits -= 36; // version information
|
|
if (v[2].length) { // alignment patterns
|
|
nbits -= 25 * v[2].length * v[2].length - 10 * v[2].length - 55;
|
|
}
|
|
return nbits;
|
|
};
|
|
|
|
// returns the number of bits available for data portions (i.e. excludes ECC
|
|
// bits but includes mode and length bits) in this version and ECC level.
|
|
var ndatabits = function(ver, ecclevel) {
|
|
var nbits = nfullbits(ver) & ~7; // no sub-octet code words
|
|
var v = VERSIONS[ver];
|
|
nbits -= 8 * v[0][ecclevel] * v[1][ecclevel]; // ecc bits
|
|
return nbits;
|
|
}
|
|
|
|
// returns the number of bits required for the length of data.
|
|
// (cf. Table 3 in JIS X 0510:2004 p. 16)
|
|
var ndatalenbits = function(ver, mode) {
|
|
switch (mode) {
|
|
case MODE_NUMERIC: return (ver < 10 ? 10 : ver < 27 ? 12 : 14);
|
|
case MODE_ALPHANUMERIC: return (ver < 10 ? 9 : ver < 27 ? 11 : 13);
|
|
case MODE_OCTET: return (ver < 10 ? 8 : 16);
|
|
case MODE_KANJI: return (ver < 10 ? 8 : ver < 27 ? 10 : 12);
|
|
}
|
|
};
|
|
|
|
// returns the maximum length of data possible in given configuration.
|
|
var getmaxdatalen = function(ver, mode, ecclevel) {
|
|
var nbits = ndatabits(ver, ecclevel) - 4 - ndatalenbits(ver, mode); // 4 for mode bits
|
|
switch (mode) {
|
|
case MODE_NUMERIC:
|
|
return ((nbits/10) | 0) * 3 + (nbits%10 < 4 ? 0 : nbits%10 < 7 ? 1 : 2);
|
|
case MODE_ALPHANUMERIC:
|
|
return ((nbits/11) | 0) * 2 + (nbits%11 < 6 ? 0 : 1);
|
|
case MODE_OCTET:
|
|
return (nbits/8) | 0;
|
|
case MODE_KANJI:
|
|
return (nbits/13) | 0;
|
|
}
|
|
};
|
|
|
|
// checks if the given data can be encoded in given mode, and returns
|
|
// the converted data for the further processing if possible. otherwise
|
|
// returns null.
|
|
//
|
|
// this function does not check the length of data; it is a duty of
|
|
// encode function below (as it depends on the version and ECC level too).
|
|
var validatedata = function(mode, data) {
|
|
switch (mode) {
|
|
case MODE_NUMERIC:
|
|
if (!data.match(NUMERIC_REGEXP)) return null;
|
|
return data;
|
|
|
|
case MODE_ALPHANUMERIC:
|
|
if (!data.match(ALPHANUMERIC_REGEXP)) return null;
|
|
return data.toUpperCase();
|
|
|
|
case MODE_OCTET:
|
|
if (typeof data === 'string') { // encode as utf-8 string
|
|
var newdata = [];
|
|
for (var i = 0; i < data.length; ++i) {
|
|
var ch = data.charCodeAt(i);
|
|
if (ch < 0x80) {
|
|
newdata.push(ch);
|
|
} else if (ch < 0x800) {
|
|
newdata.push(0xc0 | (ch >> 6),
|
|
0x80 | (ch & 0x3f));
|
|
} else if (ch < 0x10000) {
|
|
newdata.push(0xe0 | (ch >> 12),
|
|
0x80 | ((ch >> 6) & 0x3f),
|
|
0x80 | (ch & 0x3f));
|
|
} else {
|
|
newdata.push(0xf0 | (ch >> 18),
|
|
0x80 | ((ch >> 12) & 0x3f),
|
|
0x80 | ((ch >> 6) & 0x3f),
|
|
0x80 | (ch & 0x3f));
|
|
}
|
|
}
|
|
return newdata;
|
|
} else {
|
|
return data;
|
|
}
|
|
}
|
|
};
|
|
|
|
// returns the code words (sans ECC bits) for given data and configurations.
|
|
// requires data to be preprocessed by validatedata. no length check is
|
|
// performed, and everything has to be checked before calling this function.
|
|
var encode = function(ver, mode, data, maxbuflen) {
|
|
var buf = [];
|
|
var bits = 0, remaining = 8;
|
|
var datalen = data.length;
|
|
|
|
// this function is intentionally no-op when n=0.
|
|
var pack = function(x, n) {
|
|
if (n >= remaining) {
|
|
buf.push(bits | (x >> (n -= remaining)));
|
|
while (n >= 8) buf.push((x >> (n -= 8)) & 255);
|
|
bits = 0;
|
|
remaining = 8;
|
|
}
|
|
if (n > 0) bits |= (x & ((1 << n) - 1)) << (remaining -= n);
|
|
};
|
|
|
|
var nlenbits = ndatalenbits(ver, mode);
|
|
pack(mode, 4);
|
|
pack(datalen, nlenbits);
|
|
|
|
switch (mode) {
|
|
case MODE_NUMERIC:
|
|
for (var i = 2; i < datalen; i += 3) {
|
|
pack(parseInt(data.substring(i-2,i+1), 10), 10);
|
|
}
|
|
pack(parseInt(data.substring(i-2), 10), [0,4,7][datalen%3]);
|
|
break;
|
|
|
|
case MODE_ALPHANUMERIC:
|
|
for (var i = 1; i < datalen; i += 2) {
|
|
pack(ALPHANUMERIC_MAP[data.charAt(i-1)] * 45 +
|
|
ALPHANUMERIC_MAP[data.charAt(i)], 11);
|
|
}
|
|
if (datalen % 2 == 1) {
|
|
pack(ALPHANUMERIC_MAP[data.charAt(i-1)], 6);
|
|
}
|
|
break;
|
|
|
|
case MODE_OCTET:
|
|
for (var i = 0; i < datalen; ++i) {
|
|
pack(data[i], 8);
|
|
}
|
|
break;
|
|
};
|
|
|
|
// final bits. it is possible that adding terminator causes the buffer
|
|
// to overflow, but then the buffer truncated to the maximum size will
|
|
// be valid as the truncated terminator mode bits and padding is
|
|
// identical in appearance (cf. JIS X 0510:2004 sec 8.4.8).
|
|
pack(MODE_TERMINATOR, 4);
|
|
if (remaining < 8) buf.push(bits);
|
|
|
|
// the padding to fill up the remaining space. we should not add any
|
|
// words when the overflow already occurred.
|
|
while (buf.length + 1 < maxbuflen) buf.push(0xec, 0x11);
|
|
if (buf.length < maxbuflen) buf.push(0xec);
|
|
return buf;
|
|
};
|
|
|
|
// calculates ECC code words for given code words and generator polynomial.
|
|
//
|
|
// this is quite similar to CRC calculation as both Reed-Solomon and CRC use
|
|
// the certain kind of cyclic codes, which is effectively the division of
|
|
// zero-augumented polynomial by the generator polynomial. the only difference
|
|
// is that Reed-Solomon uses GF(2^8), instead of CRC's GF(2), and Reed-Solomon
|
|
// uses the different generator polynomial than CRC's.
|
|
var calculateecc = function(poly, genpoly) {
|
|
var modulus = poly.slice(0);
|
|
var polylen = poly.length, genpolylen = genpoly.length;
|
|
for (var i = 0; i < genpolylen; ++i) modulus.push(0);
|
|
for (var i = 0; i < polylen; ) {
|
|
var quotient = GF256_INVMAP[modulus[i++]];
|
|
if (quotient >= 0) {
|
|
for (var j = 0; j < genpolylen; ++j) {
|
|
modulus[i+j] ^= GF256_MAP[(quotient + genpoly[j]) % 255];
|
|
}
|
|
}
|
|
}
|
|
return modulus.slice(polylen);
|
|
};
|
|
|
|
// auguments ECC code words to given code words. the resulting words are
|
|
// ready to be encoded in the matrix.
|
|
//
|
|
// the much of actual augumenting procedure follows JIS X 0510:2004 sec 8.7.
|
|
// the code is simplified using the fact that the size of each code & ECC
|
|
// blocks is almost same; for example, when we have 4 blocks and 46 data words
|
|
// the number of code words in those blocks are 11, 11, 12, 12 respectively.
|
|
var augumenteccs = function(poly, nblocks, genpoly) {
|
|
var subsizes = [];
|
|
var subsize = (poly.length / nblocks) | 0, subsize0 = 0;
|
|
var pivot = nblocks - poly.length % nblocks;
|
|
for (var i = 0; i < pivot; ++i) {
|
|
subsizes.push(subsize0);
|
|
subsize0 += subsize;
|
|
}
|
|
for (var i = pivot; i < nblocks; ++i) {
|
|
subsizes.push(subsize0);
|
|
subsize0 += subsize+1;
|
|
}
|
|
subsizes.push(subsize0);
|
|
|
|
var eccs = [];
|
|
for (var i = 0; i < nblocks; ++i) {
|
|
eccs.push(calculateecc(poly.slice(subsizes[i], subsizes[i+1]), genpoly));
|
|
}
|
|
|
|
var result = [];
|
|
var nitemsperblock = (poly.length / nblocks) | 0;
|
|
for (var i = 0; i < nitemsperblock; ++i) {
|
|
for (var j = 0; j < nblocks; ++j) {
|
|
result.push(poly[subsizes[j] + i]);
|
|
}
|
|
}
|
|
for (var j = pivot; j < nblocks; ++j) {
|
|
result.push(poly[subsizes[j+1] - 1]);
|
|
}
|
|
for (var i = 0; i < genpoly.length; ++i) {
|
|
for (var j = 0; j < nblocks; ++j) {
|
|
result.push(eccs[j][i]);
|
|
}
|
|
}
|
|
return result;
|
|
};
|
|
|
|
// auguments BCH(p+q,q) code to the polynomial over GF(2), given the proper
|
|
// genpoly. the both input and output are in binary numbers, and unlike
|
|
// calculateecc genpoly should include the 1 bit for the highest degree.
|
|
//
|
|
// actual polynomials used for this procedure are as follows:
|
|
// - p=10, q=5, genpoly=x^10+x^8+x^5+x^4+x^2+x+1 (JIS X 0510:2004 Appendix C)
|
|
// - p=18, q=6, genpoly=x^12+x^11+x^10+x^9+x^8+x^5+x^2+1 (ibid. Appendix D)
|
|
var augumentbch = function(poly, p, genpoly, q) {
|
|
var modulus = poly << q;
|
|
for (var i = p - 1; i >= 0; --i) {
|
|
if ((modulus >> (q+i)) & 1) modulus ^= genpoly << i;
|
|
}
|
|
return (poly << q) | modulus;
|
|
};
|
|
|
|
// creates the base matrix for given version. it returns two matrices, one of
|
|
// them is the actual one and the another represents the "reserved" portion
|
|
// (e.g. finder and timing patterns) of the matrix.
|
|
//
|
|
// some entries in the matrix may be undefined, rather than 0 or 1. this is
|
|
// intentional (no initialization needed!), and putdata below will fill
|
|
// the remaining ones.
|
|
var makebasematrix = function(ver) {
|
|
var v = VERSIONS[ver], n = getsizebyver(ver);
|
|
var matrix = [], reserved = [];
|
|
for (var i = 0; i < n; ++i) {
|
|
matrix.push([]);
|
|
reserved.push([]);
|
|
}
|
|
|
|
var blit = function(y, x, h, w, bits) {
|
|
for (var i = 0; i < h; ++i) {
|
|
for (var j = 0; j < w; ++j) {
|
|
matrix[y+i][x+j] = (bits[i] >> j) & 1;
|
|
reserved[y+i][x+j] = 1;
|
|
}
|
|
}
|
|
};
|
|
|
|
// finder patterns and a part of timing patterns
|
|
// will also mark the format information area (not yet written) as reserved.
|
|
blit(0, 0, 9, 9, [0x7f, 0x41, 0x5d, 0x5d, 0x5d, 0x41, 0x17f, 0x00, 0x40]);
|
|
blit(n-8, 0, 8, 9, [0x100, 0x7f, 0x41, 0x5d, 0x5d, 0x5d, 0x41, 0x7f]);
|
|
blit(0, n-8, 9, 8, [0xfe, 0x82, 0xba, 0xba, 0xba, 0x82, 0xfe, 0x00, 0x00]);
|
|
|
|
// the rest of timing patterns
|
|
for (var i = 9; i < n-8; ++i) {
|
|
matrix[6][i] = matrix[i][6] = ~i & 1;
|
|
reserved[6][i] = reserved[i][6] = 1;
|
|
}
|
|
|
|
// alignment patterns
|
|
var aligns = v[2], m = aligns.length;
|
|
for (var i = 0; i < m; ++i) {
|
|
var minj = (i==0 || i==m-1 ? 1 : 0), maxj = (i==0 ? m-1 : m);
|
|
for (var j = minj; j < maxj; ++j) {
|
|
blit(aligns[i], aligns[j], 5, 5, [0x1f, 0x11, 0x15, 0x11, 0x1f]);
|
|
}
|
|
}
|
|
|
|
// version information
|
|
if (needsverinfo(ver)) {
|
|
var code = augumentbch(ver, 6, 0x1f25, 12);
|
|
var k = 0;
|
|
for (var i = 0; i < 6; ++i) {
|
|
for (var j = 0; j < 3; ++j) {
|
|
matrix[i][(n-11)+j] = matrix[(n-11)+j][i] = (code >> k++) & 1;
|
|
reserved[i][(n-11)+j] = reserved[(n-11)+j][i] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return {matrix: matrix, reserved: reserved};
|
|
};
|
|
|
|
// fills the data portion (i.e. unmarked in reserved) of the matrix with given
|
|
// code words. the size of code words should be no more than available bits,
|
|
// and remaining bits are padded to 0 (cf. JIS X 0510:2004 sec 8.7.3).
|
|
var putdata = function(matrix, reserved, buf) {
|
|
var n = matrix.length;
|
|
var k = 0, dir = -1;
|
|
for (var i = n-1; i >= 0; i -= 2) {
|
|
if (i == 6) --i; // skip the entire timing pattern column
|
|
var jj = (dir < 0 ? n-1 : 0);
|
|
for (var j = 0; j < n; ++j) {
|
|
for (var ii = i; ii > i-2; --ii) {
|
|
if (!reserved[jj][ii]) {
|
|
// may overflow, but (undefined >> x)
|
|
// is 0 so it will auto-pad to zero.
|
|
matrix[jj][ii] = (buf[k >> 3] >> (~k&7)) & 1;
|
|
++k;
|
|
}
|
|
}
|
|
jj += dir;
|
|
}
|
|
dir = -dir;
|
|
}
|
|
return matrix;
|
|
};
|
|
|
|
// XOR-masks the data portion of the matrix. repeating the call with the same
|
|
// arguments will revert the prior call (convenient in the matrix evaluation).
|
|
var maskdata = function(matrix, reserved, mask) {
|
|
var maskf = MASKFUNCS[mask];
|
|
var n = matrix.length;
|
|
for (var i = 0; i < n; ++i) {
|
|
for (var j = 0; j < n; ++j) {
|
|
if (!reserved[i][j]) matrix[i][j] ^= maskf(i,j);
|
|
}
|
|
}
|
|
return matrix;
|
|
}
|
|
|
|
// puts the format information.
|
|
var putformatinfo = function(matrix, reserved, ecclevel, mask) {
|
|
var n = matrix.length;
|
|
var code = augumentbch((ecclevel << 3) | mask, 5, 0x537, 10) ^ 0x5412;
|
|
for (var i = 0; i < 15; ++i) {
|
|
var r = [0,1,2,3,4,5,7,8,n-7,n-6,n-5,n-4,n-3,n-2,n-1][i];
|
|
var c = [n-1,n-2,n-3,n-4,n-5,n-6,n-7,n-8,7,5,4,3,2,1,0][i];
|
|
matrix[r][8] = matrix[8][c] = (code >> i) & 1;
|
|
// we don't have to mark those bits reserved; always done
|
|
// in makebasematrix above.
|
|
}
|
|
return matrix;
|
|
};
|
|
|
|
// evaluates the resulting matrix and returns the score (lower is better).
|
|
// (cf. JIS X 0510:2004 sec 8.8.2)
|
|
//
|
|
// the evaluation procedure tries to avoid the problematic patterns naturally
|
|
// occuring from the original matrix. for example, it penaltizes the patterns
|
|
// which just look like the finder pattern which will confuse the decoder.
|
|
// we choose the mask which results in the lowest score among 8 possible ones.
|
|
//
|
|
// note: zxing seems to use the same procedure and in many cases its choice
|
|
// agrees to ours, but sometimes it does not. practically it doesn't matter.
|
|
var evaluatematrix = function(matrix) {
|
|
// N1+(k-5) points for each consecutive row of k same-colored modules,
|
|
// where k >= 5. no overlapping row counts.
|
|
var PENALTY_CONSECUTIVE = 3;
|
|
// N2 points for each 2x2 block of same-colored modules.
|
|
// overlapping block does count.
|
|
var PENALTY_TWOBYTWO = 3;
|
|
// N3 points for each pattern with >4W:1B:1W:3B:1W:1B or
|
|
// 1B:1W:3B:1W:1B:>4W, or their multiples (e.g. highly unlikely,
|
|
// but 13W:3B:3W:9B:3W:3B counts).
|
|
var PENALTY_FINDERLIKE = 40;
|
|
// N4*k points for every (5*k)% deviation from 50% black density.
|
|
// i.e. k=1 for 55~60% and 40~45%, k=2 for 60~65% and 35~40%, etc.
|
|
var PENALTY_DENSITY = 10;
|
|
|
|
var evaluategroup = function(groups) { // assumes [W,B,W,B,W,...,B,W]
|
|
var score = 0;
|
|
for (var i = 0; i < groups.length; ++i) {
|
|
if (groups[i] >= 5) score += PENALTY_CONSECUTIVE + (groups[i]-5);
|
|
}
|
|
for (var i = 5; i < groups.length; i += 2) {
|
|
var p = groups[i];
|
|
if (groups[i-1] == p && groups[i-2] == 3*p && groups[i-3] == p &&
|
|
groups[i-4] == p && (groups[i-5] >= 4*p || groups[i+1] >= 4*p)) {
|
|
// this part differs from zxing...
|
|
score += PENALTY_FINDERLIKE;
|
|
}
|
|
}
|
|
return score;
|
|
};
|
|
|
|
var n = matrix.length;
|
|
var score = 0, nblacks = 0;
|
|
for (var i = 0; i < n; ++i) {
|
|
var row = matrix[i];
|
|
var groups;
|
|
|
|
// evaluate the current row
|
|
groups = [0]; // the first empty group of white
|
|
for (var j = 0; j < n; ) {
|
|
var k;
|
|
for (k = 0; j < n && row[j]; ++k) ++j;
|
|
groups.push(k);
|
|
for (k = 0; j < n && !row[j]; ++k) ++j;
|
|
groups.push(k);
|
|
}
|
|
score += evaluategroup(groups);
|
|
|
|
// evaluate the current column
|
|
groups = [0];
|
|
for (var j = 0; j < n; ) {
|
|
var k;
|
|
for (k = 0; j < n && matrix[j][i]; ++k) ++j;
|
|
groups.push(k);
|
|
for (k = 0; j < n && !matrix[j][i]; ++k) ++j;
|
|
groups.push(k);
|
|
}
|
|
score += evaluategroup(groups);
|
|
|
|
// check the 2x2 box and calculate the density
|
|
var nextrow = matrix[i+1] || [];
|
|
nblacks += row[0];
|
|
for (var j = 1; j < n; ++j) {
|
|
var p = row[j];
|
|
nblacks += p;
|
|
// at least comparison with next row should be strict...
|
|
if (row[j-1] == p && nextrow[j] === p && nextrow[j-1] === p) {
|
|
score += PENALTY_TWOBYTWO;
|
|
}
|
|
}
|
|
}
|
|
|
|
score += PENALTY_DENSITY * ((Math.abs(nblacks / n / n - 0.5) / 0.05) | 0);
|
|
return score;
|
|
};
|
|
|
|
// returns the fully encoded QR code matrix which contains given data.
|
|
// it also chooses the best mask automatically when mask is -1.
|
|
var generate = function(data, ver, mode, ecclevel, mask) {
|
|
var v = VERSIONS[ver];
|
|
var buf = encode(ver, mode, data, ndatabits(ver, ecclevel) >> 3);
|
|
buf = augumenteccs(buf, v[1][ecclevel], GF256_GENPOLY[v[0][ecclevel]]);
|
|
|
|
var result = makebasematrix(ver);
|
|
var matrix = result.matrix, reserved = result.reserved;
|
|
putdata(matrix, reserved, buf);
|
|
|
|
if (mask < 0) {
|
|
// find the best mask
|
|
maskdata(matrix, reserved, 0);
|
|
putformatinfo(matrix, reserved, ecclevel, 0);
|
|
var bestmask = 0, bestscore = evaluatematrix(matrix);
|
|
maskdata(matrix, reserved, 0);
|
|
for (mask = 1; mask < 8; ++mask) {
|
|
maskdata(matrix, reserved, mask);
|
|
putformatinfo(matrix, reserved, ecclevel, mask);
|
|
var score = evaluatematrix(matrix);
|
|
if (bestscore > score) {
|
|
bestscore = score;
|
|
bestmask = mask;
|
|
}
|
|
maskdata(matrix, reserved, mask);
|
|
}
|
|
mask = bestmask;
|
|
}
|
|
|
|
maskdata(matrix, reserved, mask);
|
|
putformatinfo(matrix, reserved, ecclevel, mask);
|
|
return matrix;
|
|
};
|
|
|
|
// the public interface is trivial; the options available are as follows:
|
|
//
|
|
// - version: an integer in [1,40]. when omitted (or -1) the smallest possible
|
|
// version is chosen.
|
|
// - mode: one of 'numeric', 'alphanumeric', 'octet'. when omitted the smallest
|
|
// possible mode is chosen.
|
|
// - ecclevel: one of 'L', 'M', 'Q', 'H'. defaults to 'L'.
|
|
// - mask: an integer in [0,7]. when omitted (or -1) the best mask is chosen.
|
|
//
|
|
// for generate{HTML,PNG}:
|
|
//
|
|
// - modulesize: a number. this is a size of each modules in pixels, and
|
|
// defaults to 5px.
|
|
// - margin: a number. this is a size of margin in *modules*, and defaults to
|
|
// 4 (white modules). the specficiation mandates the margin no less than 4
|
|
// modules, so it is better not to alter this value unless you know what
|
|
// you're doing.
|
|
var QRCode = {
|
|
'generate': function(data, options) {
|
|
var MODES = {'numeric': MODE_NUMERIC, 'alphanumeric': MODE_ALPHANUMERIC,
|
|
'octet': MODE_OCTET};
|
|
var ECCLEVELS = {'L': ECCLEVEL_L, 'M': ECCLEVEL_M, 'Q': ECCLEVEL_Q,
|
|
'H': ECCLEVEL_H};
|
|
|
|
options = options || {};
|
|
var ver = options.version || -1;
|
|
var ecclevel = ECCLEVELS[(options.ecclevel || 'L').toUpperCase()];
|
|
var mode = options.mode ? MODES[options.mode.toLowerCase()] : -1;
|
|
var mask = 'mask' in options ? options.mask : -1;
|
|
|
|
if (mode < 0) {
|
|
if (typeof data === 'string') {
|
|
if (data.match(NUMERIC_REGEXP)) {
|
|
mode = MODE_NUMERIC;
|
|
} else if (data.match(ALPHANUMERIC_OUT_REGEXP)) {
|
|
// while encode supports case-insensitive
|
|
// encoding, we restrict the data to be
|
|
// uppercased when auto-selecting the mode.
|
|
mode = MODE_ALPHANUMERIC;
|
|
} else {
|
|
mode = MODE_OCTET;
|
|
}
|
|
} else {
|
|
mode = MODE_OCTET;
|
|
}
|
|
} else if (!(mode == MODE_NUMERIC || mode == MODE_ALPHANUMERIC ||
|
|
mode == MODE_OCTET)) {
|
|
throw 'invalid or unsupported mode';
|
|
}
|
|
|
|
data = validatedata(mode, data);
|
|
if (data === null) throw 'invalid data format';
|
|
|
|
if (ecclevel < 0 || ecclevel > 3) throw 'invalid ECC level';
|
|
|
|
if (ver < 0) {
|
|
for (ver = 1; ver <= 40; ++ver) {
|
|
if (data.length <= getmaxdatalen(ver, mode, ecclevel)) break;
|
|
}
|
|
if (ver > 40) throw 'too large data';
|
|
} else if (ver < 1 || ver > 40) {
|
|
throw 'invalid version';
|
|
}
|
|
|
|
if (mask != -1 && (mask < 0 || mask > 8)) throw 'invalid mask';
|
|
|
|
return generate(data, ver, mode, ecclevel, mask);
|
|
},
|
|
|
|
'generateHTML': function(data, options) {
|
|
options = options || {};
|
|
var matrix = QRCode['generate'](data, options);
|
|
var modsize = Math.max(options.modulesize || 5, 0.5);
|
|
var margin = Math.max(options.margin || 4, 0.0);
|
|
|
|
var e = document.createElement('div');
|
|
var n = matrix.length;
|
|
var html = ['<table border="0" cellspacing="0" cellpadding="0" style="border:' +
|
|
modsize*margin + 'px solid #fff;background:#fff">'];
|
|
for (var i = 0; i < n; ++i) {
|
|
html.push('<tr>');
|
|
for (var j = 0; j < n; ++j) {
|
|
html.push('<td style="width:' + modsize + 'px;height:' + modsize + 'px' +
|
|
(matrix[i][j] ? ';background:#000' : '') + '"></td>');
|
|
}
|
|
html.push('</tr>');
|
|
}
|
|
e.className = 'qrcode';
|
|
e.innerHTML = html.join('') + '</table>';
|
|
return e;
|
|
},
|
|
|
|
'generatePNG': function(data, options) {
|
|
options = options || {};
|
|
var matrix = QRCode['generate'](data, options);
|
|
var modsize = Math.max(options.modulesize || 5, 0.5);
|
|
var margin = Math.max(options.margin || 4, 0.0);
|
|
var n = matrix.length;
|
|
var size = modsize * (n + 2 * margin);
|
|
|
|
var canvas = document.createElement('canvas'), context;
|
|
canvas.width = canvas.height = size;
|
|
context = canvas.getContext('2d');
|
|
if (!context) throw 'canvas support is needed for PNG output';
|
|
|
|
context.fillStyle = '#fff';
|
|
context.fillRect(0, 0, size, size);
|
|
context.fillStyle = '#000';
|
|
for (var i = 0; i < n; ++i) {
|
|
for (var j = 0; j < n; ++j) {
|
|
if (matrix[i][j]) {
|
|
context.fillRect(modsize * (margin + j),
|
|
modsize * (margin + i),
|
|
modsize, modsize);
|
|
}
|
|
}
|
|
}
|
|
//context.fillText('evaluation: ' + evaluatematrix(matrix), 10, 10);
|
|
return canvas.toDataURL();
|
|
}
|
|
};
|
|
|
|
return QRCode;
|
|
})();
|