mirror of
https://github.com/YunoHost-Apps/mediawiki_ynh.git
synced 2024-09-03 19:46:05 +02:00
588 lines
16 KiB
PHP
588 lines
16 KiB
PHP
<?php
|
|
/**
|
|
* New version of the difference engine
|
|
*
|
|
* Copyright © 2008 Guy Van den Broeck <guy@guyvdb.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
* http://www.gnu.org/copyleft/gpl.html
|
|
*
|
|
* @file
|
|
* @ingroup DifferenceEngine
|
|
*/
|
|
|
|
/**
|
|
* This diff implementation is mainly lifted from the LCS algorithm of the Eclipse project which
|
|
* in turn is based on Myers' "An O(ND) difference algorithm and its variations"
|
|
* (http://citeseer.ist.psu.edu/myers86ond.html) with range compression (see Wu et al.'s
|
|
* "An O(NP) Sequence Comparison Algorithm").
|
|
*
|
|
* This implementation supports an upper bound on the execution time.
|
|
*
|
|
* Complexity: O((M + N)D) worst case time, O(M + N + D^2) expected time, O(M + N) space
|
|
*
|
|
* @author Guy Van den Broeck
|
|
* @ingroup DifferenceEngine
|
|
*/
|
|
class WikiDiff3 {
|
|
|
|
// Input variables
|
|
private $from;
|
|
private $to;
|
|
private $m;
|
|
private $n;
|
|
|
|
private $tooLong;
|
|
private $powLimit;
|
|
|
|
// State variables
|
|
private $maxDifferences;
|
|
private $lcsLengthCorrectedForHeuristic = false;
|
|
|
|
// Output variables
|
|
public $length;
|
|
public $removed;
|
|
public $added;
|
|
public $heuristicUsed;
|
|
|
|
function __construct( $tooLong = 2000000, $powLimit = 1.45 ) {
|
|
$this->tooLong = $tooLong;
|
|
$this->powLimit = $powLimit;
|
|
}
|
|
|
|
public function diff( /*array*/ $from, /*array*/ $to ) {
|
|
// remember initial lengths
|
|
$m = count( $from );
|
|
$n = count( $to );
|
|
|
|
$this->heuristicUsed = false;
|
|
|
|
// output
|
|
$removed = $m > 0 ? array_fill( 0, $m, true ) : array();
|
|
$added = $n > 0 ? array_fill( 0, $n, true ) : array();
|
|
|
|
// reduce the complexity for the next step (intentionally done twice)
|
|
// remove common tokens at the start
|
|
$i = 0;
|
|
while ( $i < $m && $i < $n && $from[$i] === $to[$i] ) {
|
|
$removed[$i] = $added[$i] = false;
|
|
unset( $from[$i], $to[$i] );
|
|
++$i;
|
|
}
|
|
|
|
// remove common tokens at the end
|
|
$j = 1;
|
|
while ( $i + $j <= $m && $i + $j <= $n && $from[$m - $j] === $to[$n - $j] ) {
|
|
$removed[$m - $j] = $added[$n - $j] = false;
|
|
unset( $from[$m - $j], $to[$n - $j] );
|
|
++$j;
|
|
}
|
|
|
|
$this->from = $newFromIndex = $this->to = $newToIndex = array();
|
|
|
|
// remove tokens not in both sequences
|
|
$shared = array();
|
|
foreach ( $from as $key ) {
|
|
$shared[$key] = false;
|
|
}
|
|
|
|
foreach ( $to as $index => &$el ) {
|
|
if ( array_key_exists( $el, $shared ) ) {
|
|
// keep it
|
|
$this->to[] = $el;
|
|
$shared[$el] = true;
|
|
$newToIndex[] = $index;
|
|
}
|
|
}
|
|
foreach ( $from as $index => &$el ) {
|
|
if ( $shared[$el] ) {
|
|
// keep it
|
|
$this->from[] = $el;
|
|
$newFromIndex[] = $index;
|
|
}
|
|
}
|
|
|
|
unset( $shared, $from, $to );
|
|
|
|
$this->m = count( $this->from );
|
|
$this->n = count( $this->to );
|
|
|
|
$this->removed = $this->m > 0 ? array_fill( 0, $this->m, true ) : array();
|
|
$this->added = $this->n > 0 ? array_fill( 0, $this->n, true ) : array();
|
|
|
|
if ( $this->m == 0 || $this->n == 0 ) {
|
|
$this->length = 0;
|
|
} else {
|
|
$this->maxDifferences = ceil( ( $this->m + $this->n ) / 2.0 );
|
|
if ( $this->m * $this->n > $this->tooLong ) {
|
|
// limit complexity to D^POW_LIMIT for long sequences
|
|
$this->maxDifferences = floor( pow( $this->maxDifferences, $this->powLimit - 1.0 ) );
|
|
wfDebug( "Limiting max number of differences to $this->maxDifferences\n" );
|
|
}
|
|
|
|
/*
|
|
* The common prefixes and suffixes are always part of some LCS, include
|
|
* them now to reduce our search space
|
|
*/
|
|
$max = min( $this->m, $this->n );
|
|
for ( $forwardBound = 0; $forwardBound < $max
|
|
&& $this->from[$forwardBound] === $this->to[$forwardBound];
|
|
++$forwardBound ) {
|
|
$this->removed[$forwardBound] = $this->added[$forwardBound] = false;
|
|
}
|
|
|
|
$backBoundL1 = $this->m - 1;
|
|
$backBoundL2 = $this->n - 1;
|
|
|
|
while ( $backBoundL1 >= $forwardBound && $backBoundL2 >= $forwardBound
|
|
&& $this->from[$backBoundL1] === $this->to[$backBoundL2] ) {
|
|
$this->removed[$backBoundL1--] = $this->added[$backBoundL2--] = false;
|
|
}
|
|
|
|
$temp = array_fill( 0, $this->m + $this->n + 1, 0 );
|
|
$V = array( $temp, $temp );
|
|
$snake = array( 0, 0, 0 );
|
|
|
|
$this->length = $forwardBound + $this->m - $backBoundL1 - 1
|
|
+ $this->lcs_rec( $forwardBound, $backBoundL1,
|
|
$forwardBound, $backBoundL2, $V, $snake );
|
|
}
|
|
|
|
$this->m = $m;
|
|
$this->n = $n;
|
|
|
|
$this->length += $i + $j - 1;
|
|
|
|
foreach ( $this->removed as $key => &$removed_elem ) {
|
|
if ( !$removed_elem ) {
|
|
$removed[$newFromIndex[$key]] = false;
|
|
}
|
|
}
|
|
foreach ( $this->added as $key => &$added_elem ) {
|
|
if ( !$added_elem ) {
|
|
$added[$newToIndex[$key]] = false;
|
|
}
|
|
}
|
|
$this->removed = $removed;
|
|
$this->added = $added;
|
|
}
|
|
|
|
function diff_range( $from_lines, $to_lines ) {
|
|
// Diff and store locally
|
|
$this->diff( $from_lines, $to_lines );
|
|
unset( $from_lines, $to_lines );
|
|
|
|
$ranges = array();
|
|
$xi = $yi = 0;
|
|
while ( $xi < $this->m || $yi < $this->n ) {
|
|
// Matching "snake".
|
|
while ( $xi < $this->m && $yi < $this->n
|
|
&& !$this->removed[$xi]
|
|
&& !$this->added[$yi] ) {
|
|
++$xi;
|
|
++$yi;
|
|
}
|
|
// Find deletes & adds.
|
|
$xstart = $xi;
|
|
while ( $xi < $this->m && $this->removed[$xi] ) {
|
|
++$xi;
|
|
}
|
|
|
|
$ystart = $yi;
|
|
while ( $yi < $this->n && $this->added[$yi] ) {
|
|
++$yi;
|
|
}
|
|
|
|
if ( $xi > $xstart || $yi > $ystart ) {
|
|
$ranges[] = new RangeDifference( $xstart, $xi,
|
|
$ystart, $yi );
|
|
}
|
|
}
|
|
return $ranges;
|
|
}
|
|
|
|
private function lcs_rec( $bottoml1, $topl1, $bottoml2, $topl2, &$V, &$snake ) {
|
|
// check that both sequences are non-empty
|
|
if ( $bottoml1 > $topl1 || $bottoml2 > $topl2 ) {
|
|
return 0;
|
|
}
|
|
|
|
$d = $this->find_middle_snake( $bottoml1, $topl1, $bottoml2,
|
|
$topl2, $V, $snake );
|
|
|
|
// need to store these so we don't lose them when they're
|
|
// overwritten by the recursion
|
|
$len = $snake[2];
|
|
$startx = $snake[0];
|
|
$starty = $snake[1];
|
|
|
|
// the middle snake is part of the LCS, store it
|
|
for ( $i = 0; $i < $len; ++$i ) {
|
|
$this->removed[$startx + $i] = $this->added[$starty + $i] = false;
|
|
}
|
|
|
|
if ( $d > 1 ) {
|
|
return $len
|
|
+ $this->lcs_rec( $bottoml1, $startx - 1, $bottoml2,
|
|
$starty - 1, $V, $snake )
|
|
+ $this->lcs_rec( $startx + $len, $topl1, $starty + $len,
|
|
$topl2, $V, $snake );
|
|
} elseif ( $d == 1 ) {
|
|
/*
|
|
* In this case the sequences differ by exactly 1 line. We have
|
|
* already saved all the lines after the difference in the for loop
|
|
* above, now we need to save all the lines before the difference.
|
|
*/
|
|
$max = min( $startx - $bottoml1, $starty - $bottoml2 );
|
|
for ( $i = 0; $i < $max; ++$i ) {
|
|
$this->removed[$bottoml1 + $i] =
|
|
$this->added[$bottoml2 + $i] = false;
|
|
}
|
|
return $max + $len;
|
|
}
|
|
return $len;
|
|
}
|
|
|
|
private function find_middle_snake( $bottoml1, $topl1, $bottoml2, $topl2, &$V, &$snake ) {
|
|
$from = &$this->from;
|
|
$to = &$this->to;
|
|
$V0 = &$V[0];
|
|
$V1 = &$V[1];
|
|
$snake0 = &$snake[0];
|
|
$snake1 = &$snake[1];
|
|
$snake2 = &$snake[2];
|
|
$bottoml1_min_1 = $bottoml1 -1;
|
|
$bottoml2_min_1 = $bottoml2 -1;
|
|
$N = $topl1 - $bottoml1_min_1;
|
|
$M = $topl2 - $bottoml2_min_1;
|
|
$delta = $N - $M;
|
|
$maxabsx = $N + $bottoml1;
|
|
$maxabsy = $M + $bottoml2;
|
|
$limit = min( $this->maxDifferences, ceil( ( $N + $M ) / 2 ) );
|
|
|
|
// value_to_add_forward: a 0 or 1 that we add to the start
|
|
// offset to make it odd/even
|
|
if ( ( $M & 1 ) == 1 ) {
|
|
$value_to_add_forward = 1;
|
|
} else {
|
|
$value_to_add_forward = 0;
|
|
}
|
|
|
|
if ( ( $N & 1 ) == 1 ) {
|
|
$value_to_add_backward = 1;
|
|
} else {
|
|
$value_to_add_backward = 0;
|
|
}
|
|
|
|
$start_forward = -$M;
|
|
$end_forward = $N;
|
|
$start_backward = -$N;
|
|
$end_backward = $M;
|
|
|
|
$limit_min_1 = $limit - 1;
|
|
$limit_plus_1 = $limit + 1;
|
|
|
|
$V0[$limit_plus_1] = 0;
|
|
$V1[$limit_min_1] = $N;
|
|
$limit = min( $this->maxDifferences, ceil( ( $N + $M ) / 2 ) );
|
|
|
|
if ( ( $delta & 1 ) == 1 ) {
|
|
for ( $d = 0; $d <= $limit; ++$d ) {
|
|
$start_diag = max( $value_to_add_forward + $start_forward, -$d );
|
|
$end_diag = min( $end_forward, $d );
|
|
$value_to_add_forward = 1 - $value_to_add_forward;
|
|
|
|
// compute forward furthest reaching paths
|
|
for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
|
|
if ( $k == -$d || ( $k < $d
|
|
&& $V0[$limit_min_1 + $k] < $V0[$limit_plus_1 + $k] ) ) {
|
|
$x = $V0[$limit_plus_1 + $k];
|
|
} else {
|
|
$x = $V0[$limit_min_1 + $k] + 1;
|
|
}
|
|
|
|
$absx = $snake0 = $x + $bottoml1;
|
|
$absy = $snake1 = $x - $k + $bottoml2;
|
|
|
|
while ( $absx < $maxabsx && $absy < $maxabsy && $from[$absx] === $to[$absy] ) {
|
|
++$absx;
|
|
++$absy;
|
|
}
|
|
$x = $absx -$bottoml1;
|
|
|
|
$snake2 = $absx -$snake0;
|
|
$V0[$limit + $k] = $x;
|
|
if ( $k >= $delta - $d + 1 && $k <= $delta + $d - 1
|
|
&& $x >= $V1[$limit + $k - $delta] ) {
|
|
return 2 * $d - 1;
|
|
}
|
|
|
|
// check to see if we can cut down the diagonal range
|
|
if ( $x >= $N && $end_forward > $k - 1 ) {
|
|
$end_forward = $k - 1;
|
|
} elseif ( $absy - $bottoml2 >= $M ) {
|
|
$start_forward = $k + 1;
|
|
$value_to_add_forward = 0;
|
|
}
|
|
}
|
|
|
|
$start_diag = max( $value_to_add_backward + $start_backward, -$d );
|
|
$end_diag = min( $end_backward, $d );
|
|
$value_to_add_backward = 1 - $value_to_add_backward;
|
|
|
|
// compute backward furthest reaching paths
|
|
for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
|
|
if ( $k == $d
|
|
|| ( $k != -$d && $V1[$limit_min_1 + $k] < $V1[$limit_plus_1 + $k] ) ) {
|
|
$x = $V1[$limit_min_1 + $k];
|
|
} else {
|
|
$x = $V1[$limit_plus_1 + $k] - 1;
|
|
}
|
|
|
|
$y = $x - $k - $delta;
|
|
|
|
$snake2 = 0;
|
|
while ( $x > 0 && $y > 0
|
|
&& $from[$x + $bottoml1_min_1] === $to[$y + $bottoml2_min_1] ) {
|
|
--$x;
|
|
--$y;
|
|
++$snake2;
|
|
}
|
|
$V1[$limit + $k] = $x;
|
|
|
|
// check to see if we can cut down our diagonal range
|
|
if ( $x <= 0 ) {
|
|
$start_backward = $k + 1;
|
|
$value_to_add_backward = 0;
|
|
} elseif ( $y <= 0 && $end_backward > $k - 1 ) {
|
|
$end_backward = $k - 1;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for ( $d = 0; $d <= $limit; ++$d ) {
|
|
$start_diag = max( $value_to_add_forward + $start_forward, -$d );
|
|
$end_diag = min( $end_forward, $d );
|
|
$value_to_add_forward = 1 - $value_to_add_forward;
|
|
|
|
// compute forward furthest reaching paths
|
|
for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
|
|
if ( $k == -$d
|
|
|| ( $k < $d && $V0[$limit_min_1 + $k] < $V0[$limit_plus_1 + $k] ) ) {
|
|
$x = $V0[$limit_plus_1 + $k];
|
|
} else {
|
|
$x = $V0[$limit_min_1 + $k] + 1;
|
|
}
|
|
|
|
$absx = $snake0 = $x + $bottoml1;
|
|
$absy = $snake1 = $x - $k + $bottoml2;
|
|
|
|
while ( $absx < $maxabsx && $absy < $maxabsy && $from[$absx] === $to[$absy] ) {
|
|
++$absx;
|
|
++$absy;
|
|
}
|
|
$x = $absx -$bottoml1;
|
|
$snake2 = $absx -$snake0;
|
|
$V0[$limit + $k] = $x;
|
|
|
|
// check to see if we can cut down the diagonal range
|
|
if ( $x >= $N && $end_forward > $k - 1 ) {
|
|
$end_forward = $k - 1;
|
|
} elseif ( $absy -$bottoml2 >= $M ) {
|
|
$start_forward = $k + 1;
|
|
$value_to_add_forward = 0;
|
|
}
|
|
}
|
|
|
|
$start_diag = max( $value_to_add_backward + $start_backward, -$d );
|
|
$end_diag = min( $end_backward, $d );
|
|
$value_to_add_backward = 1 - $value_to_add_backward;
|
|
|
|
// compute backward furthest reaching paths
|
|
for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
|
|
if ( $k == $d
|
|
|| ( $k != -$d && $V1[$limit_min_1 + $k] < $V1[$limit_plus_1 + $k] ) ) {
|
|
$x = $V1[$limit_min_1 + $k];
|
|
} else {
|
|
$x = $V1[$limit_plus_1 + $k] - 1;
|
|
}
|
|
|
|
$y = $x - $k - $delta;
|
|
|
|
$snake2 = 0;
|
|
while ( $x > 0 && $y > 0
|
|
&& $from[$x + $bottoml1_min_1] === $to[$y + $bottoml2_min_1] ) {
|
|
--$x;
|
|
--$y;
|
|
++$snake2;
|
|
}
|
|
$V1[$limit + $k] = $x;
|
|
|
|
if ( $k >= -$delta - $d && $k <= $d - $delta
|
|
&& $x <= $V0[$limit + $k + $delta] ) {
|
|
$snake0 = $bottoml1 + $x;
|
|
$snake1 = $bottoml2 + $y;
|
|
return 2 * $d;
|
|
}
|
|
|
|
// check to see if we can cut down our diagonal range
|
|
if ( $x <= 0 ) {
|
|
$start_backward = $k + 1;
|
|
$value_to_add_backward = 0;
|
|
} elseif ( $y <= 0 && $end_backward > $k - 1 ) {
|
|
$end_backward = $k - 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* computing the true LCS is too expensive, instead find the diagonal
|
|
* with the most progress and pretend a midle snake of length 0 occurs
|
|
* there.
|
|
*/
|
|
|
|
$most_progress = self::findMostProgress( $M, $N, $limit, $V );
|
|
|
|
$snake0 = $bottoml1 + $most_progress[0];
|
|
$snake1 = $bottoml2 + $most_progress[1];
|
|
$snake2 = 0;
|
|
wfDebug( "Computing the LCS is too expensive. Using a heuristic.\n" );
|
|
$this->heuristicUsed = true;
|
|
return 5; /*
|
|
* HACK: since we didn't really finish the LCS computation
|
|
* we don't really know the length of the SES. We don't do
|
|
* anything with the result anyway, unless it's <=1. We know
|
|
* for a fact SES > 1 so 5 is as good a number as any to
|
|
* return here
|
|
*/
|
|
}
|
|
|
|
private static function findMostProgress( $M, $N, $limit, $V ) {
|
|
$delta = $N - $M;
|
|
|
|
if ( ( $M & 1 ) == ( $limit & 1 ) ) {
|
|
$forward_start_diag = max( -$M, -$limit );
|
|
} else {
|
|
$forward_start_diag = max( 1 - $M, -$limit );
|
|
}
|
|
|
|
$forward_end_diag = min( $N, $limit );
|
|
|
|
if ( ( $N & 1 ) == ( $limit & 1 ) ) {
|
|
$backward_start_diag = max( -$N, -$limit );
|
|
} else {
|
|
$backward_start_diag = max( 1 - $N, -$limit );
|
|
}
|
|
|
|
$backward_end_diag = -min( $M, $limit );
|
|
|
|
$temp = array( 0, 0, 0 );
|
|
|
|
$max_progress = array_fill( 0, ceil( max( $forward_end_diag - $forward_start_diag,
|
|
$backward_end_diag - $backward_start_diag ) / 2 ), $temp );
|
|
$num_progress = 0; // the 1st entry is current, it is initialized
|
|
// with 0s
|
|
|
|
// first search the forward diagonals
|
|
for ( $k = $forward_start_diag; $k <= $forward_end_diag; $k += 2 ) {
|
|
$x = $V[0][$limit + $k];
|
|
$y = $x - $k;
|
|
if ( $x > $N || $y > $M ) {
|
|
continue;
|
|
}
|
|
|
|
$progress = $x + $y;
|
|
if ( $progress > $max_progress[0][2] ) {
|
|
$num_progress = 0;
|
|
$max_progress[0][0] = $x;
|
|
$max_progress[0][1] = $y;
|
|
$max_progress[0][2] = $progress;
|
|
} elseif ( $progress == $max_progress[0][2] ) {
|
|
++$num_progress;
|
|
$max_progress[$num_progress][0] = $x;
|
|
$max_progress[$num_progress][1] = $y;
|
|
$max_progress[$num_progress][2] = $progress;
|
|
}
|
|
}
|
|
|
|
$max_progress_forward = true; // initially the maximum
|
|
// progress is in the forward
|
|
// direction
|
|
|
|
// now search the backward diagonals
|
|
for ( $k = $backward_start_diag; $k <= $backward_end_diag; $k += 2 ) {
|
|
$x = $V[1][$limit + $k];
|
|
$y = $x - $k - $delta;
|
|
if ( $x < 0 || $y < 0 ) {
|
|
continue;
|
|
}
|
|
|
|
$progress = $N - $x + $M - $y;
|
|
if ( $progress > $max_progress[0][2] ) {
|
|
$num_progress = 0;
|
|
$max_progress_forward = false;
|
|
$max_progress[0][0] = $x;
|
|
$max_progress[0][1] = $y;
|
|
$max_progress[0][2] = $progress;
|
|
} elseif ( $progress == $max_progress[0][2] && !$max_progress_forward ) {
|
|
++$num_progress;
|
|
$max_progress[$num_progress][0] = $x;
|
|
$max_progress[$num_progress][1] = $y;
|
|
$max_progress[$num_progress][2] = $progress;
|
|
}
|
|
}
|
|
|
|
// return the middle diagonal with maximal progress.
|
|
return $max_progress[(int)floor( $num_progress / 2 )];
|
|
}
|
|
|
|
/**
|
|
* @return mixed
|
|
*/
|
|
public function getLcsLength() {
|
|
if ( $this->heuristicUsed && !$this->lcsLengthCorrectedForHeuristic ) {
|
|
$this->lcsLengthCorrectedForHeuristic = true;
|
|
$this->length = $this->m -array_sum( $this->added );
|
|
}
|
|
return $this->length;
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* Alternative representation of a set of changes, by the index
|
|
* ranges that are changed.
|
|
*
|
|
* @ingroup DifferenceEngine
|
|
*/
|
|
class RangeDifference {
|
|
|
|
public $leftstart;
|
|
public $leftend;
|
|
public $leftlength;
|
|
|
|
public $rightstart;
|
|
public $rightend;
|
|
public $rightlength;
|
|
|
|
function __construct( $leftstart, $leftend, $rightstart, $rightend ) {
|
|
$this->leftstart = $leftstart;
|
|
$this->leftend = $leftend;
|
|
$this->leftlength = $leftend - $leftstart;
|
|
$this->rightstart = $rightstart;
|
|
$this->rightend = $rightend;
|
|
$this->rightlength = $rightend - $rightstart;
|
|
}
|
|
}
|