1
0
Fork 0
mirror of https://github.com/YunoHost-Apps/mediawiki_ynh.git synced 2024-09-03 19:46:05 +02:00
mediawiki_ynh/sources/mediawiki/includes/diff/WikiDiff3.php

588 lines
16 KiB
PHP

<?php
/**
* New version of the difference engine
*
* Copyright © 2008 Guy Van den Broeck <guy@guyvdb.eu>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
* http://www.gnu.org/copyleft/gpl.html
*
* @file
* @ingroup DifferenceEngine
*/
/**
* This diff implementation is mainly lifted from the LCS algorithm of the Eclipse project which
* in turn is based on Myers' "An O(ND) difference algorithm and its variations"
* (http://citeseer.ist.psu.edu/myers86ond.html) with range compression (see Wu et al.'s
* "An O(NP) Sequence Comparison Algorithm").
*
* This implementation supports an upper bound on the execution time.
*
* Complexity: O((M + N)D) worst case time, O(M + N + D^2) expected time, O(M + N) space
*
* @author Guy Van den Broeck
* @ingroup DifferenceEngine
*/
class WikiDiff3 {
// Input variables
private $from;
private $to;
private $m;
private $n;
private $tooLong;
private $powLimit;
// State variables
private $maxDifferences;
private $lcsLengthCorrectedForHeuristic = false;
// Output variables
public $length;
public $removed;
public $added;
public $heuristicUsed;
function __construct( $tooLong = 2000000, $powLimit = 1.45 ) {
$this->tooLong = $tooLong;
$this->powLimit = $powLimit;
}
public function diff( /*array*/ $from, /*array*/ $to ) {
// remember initial lengths
$m = count( $from );
$n = count( $to );
$this->heuristicUsed = false;
// output
$removed = $m > 0 ? array_fill( 0, $m, true ) : array();
$added = $n > 0 ? array_fill( 0, $n, true ) : array();
// reduce the complexity for the next step (intentionally done twice)
// remove common tokens at the start
$i = 0;
while ( $i < $m && $i < $n && $from[$i] === $to[$i] ) {
$removed[$i] = $added[$i] = false;
unset( $from[$i], $to[$i] );
++$i;
}
// remove common tokens at the end
$j = 1;
while ( $i + $j <= $m && $i + $j <= $n && $from[$m - $j] === $to[$n - $j] ) {
$removed[$m - $j] = $added[$n - $j] = false;
unset( $from[$m - $j], $to[$n - $j] );
++$j;
}
$this->from = $newFromIndex = $this->to = $newToIndex = array();
// remove tokens not in both sequences
$shared = array();
foreach ( $from as $key ) {
$shared[$key] = false;
}
foreach ( $to as $index => &$el ) {
if ( array_key_exists( $el, $shared ) ) {
// keep it
$this->to[] = $el;
$shared[$el] = true;
$newToIndex[] = $index;
}
}
foreach ( $from as $index => &$el ) {
if ( $shared[$el] ) {
// keep it
$this->from[] = $el;
$newFromIndex[] = $index;
}
}
unset( $shared, $from, $to );
$this->m = count( $this->from );
$this->n = count( $this->to );
$this->removed = $this->m > 0 ? array_fill( 0, $this->m, true ) : array();
$this->added = $this->n > 0 ? array_fill( 0, $this->n, true ) : array();
if ( $this->m == 0 || $this->n == 0 ) {
$this->length = 0;
} else {
$this->maxDifferences = ceil( ( $this->m + $this->n ) / 2.0 );
if ( $this->m * $this->n > $this->tooLong ) {
// limit complexity to D^POW_LIMIT for long sequences
$this->maxDifferences = floor( pow( $this->maxDifferences, $this->powLimit - 1.0 ) );
wfDebug( "Limiting max number of differences to $this->maxDifferences\n" );
}
/*
* The common prefixes and suffixes are always part of some LCS, include
* them now to reduce our search space
*/
$max = min( $this->m, $this->n );
for ( $forwardBound = 0; $forwardBound < $max
&& $this->from[$forwardBound] === $this->to[$forwardBound];
++$forwardBound ) {
$this->removed[$forwardBound] = $this->added[$forwardBound] = false;
}
$backBoundL1 = $this->m - 1;
$backBoundL2 = $this->n - 1;
while ( $backBoundL1 >= $forwardBound && $backBoundL2 >= $forwardBound
&& $this->from[$backBoundL1] === $this->to[$backBoundL2] ) {
$this->removed[$backBoundL1--] = $this->added[$backBoundL2--] = false;
}
$temp = array_fill( 0, $this->m + $this->n + 1, 0 );
$V = array( $temp, $temp );
$snake = array( 0, 0, 0 );
$this->length = $forwardBound + $this->m - $backBoundL1 - 1
+ $this->lcs_rec( $forwardBound, $backBoundL1,
$forwardBound, $backBoundL2, $V, $snake );
}
$this->m = $m;
$this->n = $n;
$this->length += $i + $j - 1;
foreach ( $this->removed as $key => &$removed_elem ) {
if ( !$removed_elem ) {
$removed[$newFromIndex[$key]] = false;
}
}
foreach ( $this->added as $key => &$added_elem ) {
if ( !$added_elem ) {
$added[$newToIndex[$key]] = false;
}
}
$this->removed = $removed;
$this->added = $added;
}
function diff_range( $from_lines, $to_lines ) {
// Diff and store locally
$this->diff( $from_lines, $to_lines );
unset( $from_lines, $to_lines );
$ranges = array();
$xi = $yi = 0;
while ( $xi < $this->m || $yi < $this->n ) {
// Matching "snake".
while ( $xi < $this->m && $yi < $this->n
&& !$this->removed[$xi]
&& !$this->added[$yi] ) {
++$xi;
++$yi;
}
// Find deletes & adds.
$xstart = $xi;
while ( $xi < $this->m && $this->removed[$xi] ) {
++$xi;
}
$ystart = $yi;
while ( $yi < $this->n && $this->added[$yi] ) {
++$yi;
}
if ( $xi > $xstart || $yi > $ystart ) {
$ranges[] = new RangeDifference( $xstart, $xi,
$ystart, $yi );
}
}
return $ranges;
}
private function lcs_rec( $bottoml1, $topl1, $bottoml2, $topl2, &$V, &$snake ) {
// check that both sequences are non-empty
if ( $bottoml1 > $topl1 || $bottoml2 > $topl2 ) {
return 0;
}
$d = $this->find_middle_snake( $bottoml1, $topl1, $bottoml2,
$topl2, $V, $snake );
// need to store these so we don't lose them when they're
// overwritten by the recursion
$len = $snake[2];
$startx = $snake[0];
$starty = $snake[1];
// the middle snake is part of the LCS, store it
for ( $i = 0; $i < $len; ++$i ) {
$this->removed[$startx + $i] = $this->added[$starty + $i] = false;
}
if ( $d > 1 ) {
return $len
+ $this->lcs_rec( $bottoml1, $startx - 1, $bottoml2,
$starty - 1, $V, $snake )
+ $this->lcs_rec( $startx + $len, $topl1, $starty + $len,
$topl2, $V, $snake );
} elseif ( $d == 1 ) {
/*
* In this case the sequences differ by exactly 1 line. We have
* already saved all the lines after the difference in the for loop
* above, now we need to save all the lines before the difference.
*/
$max = min( $startx - $bottoml1, $starty - $bottoml2 );
for ( $i = 0; $i < $max; ++$i ) {
$this->removed[$bottoml1 + $i] =
$this->added[$bottoml2 + $i] = false;
}
return $max + $len;
}
return $len;
}
private function find_middle_snake( $bottoml1, $topl1, $bottoml2, $topl2, &$V, &$snake ) {
$from = &$this->from;
$to = &$this->to;
$V0 = &$V[0];
$V1 = &$V[1];
$snake0 = &$snake[0];
$snake1 = &$snake[1];
$snake2 = &$snake[2];
$bottoml1_min_1 = $bottoml1 -1;
$bottoml2_min_1 = $bottoml2 -1;
$N = $topl1 - $bottoml1_min_1;
$M = $topl2 - $bottoml2_min_1;
$delta = $N - $M;
$maxabsx = $N + $bottoml1;
$maxabsy = $M + $bottoml2;
$limit = min( $this->maxDifferences, ceil( ( $N + $M ) / 2 ) );
// value_to_add_forward: a 0 or 1 that we add to the start
// offset to make it odd/even
if ( ( $M & 1 ) == 1 ) {
$value_to_add_forward = 1;
} else {
$value_to_add_forward = 0;
}
if ( ( $N & 1 ) == 1 ) {
$value_to_add_backward = 1;
} else {
$value_to_add_backward = 0;
}
$start_forward = -$M;
$end_forward = $N;
$start_backward = -$N;
$end_backward = $M;
$limit_min_1 = $limit - 1;
$limit_plus_1 = $limit + 1;
$V0[$limit_plus_1] = 0;
$V1[$limit_min_1] = $N;
$limit = min( $this->maxDifferences, ceil( ( $N + $M ) / 2 ) );
if ( ( $delta & 1 ) == 1 ) {
for ( $d = 0; $d <= $limit; ++$d ) {
$start_diag = max( $value_to_add_forward + $start_forward, -$d );
$end_diag = min( $end_forward, $d );
$value_to_add_forward = 1 - $value_to_add_forward;
// compute forward furthest reaching paths
for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
if ( $k == -$d || ( $k < $d
&& $V0[$limit_min_1 + $k] < $V0[$limit_plus_1 + $k] ) ) {
$x = $V0[$limit_plus_1 + $k];
} else {
$x = $V0[$limit_min_1 + $k] + 1;
}
$absx = $snake0 = $x + $bottoml1;
$absy = $snake1 = $x - $k + $bottoml2;
while ( $absx < $maxabsx && $absy < $maxabsy && $from[$absx] === $to[$absy] ) {
++$absx;
++$absy;
}
$x = $absx -$bottoml1;
$snake2 = $absx -$snake0;
$V0[$limit + $k] = $x;
if ( $k >= $delta - $d + 1 && $k <= $delta + $d - 1
&& $x >= $V1[$limit + $k - $delta] ) {
return 2 * $d - 1;
}
// check to see if we can cut down the diagonal range
if ( $x >= $N && $end_forward > $k - 1 ) {
$end_forward = $k - 1;
} elseif ( $absy - $bottoml2 >= $M ) {
$start_forward = $k + 1;
$value_to_add_forward = 0;
}
}
$start_diag = max( $value_to_add_backward + $start_backward, -$d );
$end_diag = min( $end_backward, $d );
$value_to_add_backward = 1 - $value_to_add_backward;
// compute backward furthest reaching paths
for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
if ( $k == $d
|| ( $k != -$d && $V1[$limit_min_1 + $k] < $V1[$limit_plus_1 + $k] ) ) {
$x = $V1[$limit_min_1 + $k];
} else {
$x = $V1[$limit_plus_1 + $k] - 1;
}
$y = $x - $k - $delta;
$snake2 = 0;
while ( $x > 0 && $y > 0
&& $from[$x + $bottoml1_min_1] === $to[$y + $bottoml2_min_1] ) {
--$x;
--$y;
++$snake2;
}
$V1[$limit + $k] = $x;
// check to see if we can cut down our diagonal range
if ( $x <= 0 ) {
$start_backward = $k + 1;
$value_to_add_backward = 0;
} elseif ( $y <= 0 && $end_backward > $k - 1 ) {
$end_backward = $k - 1;
}
}
}
} else {
for ( $d = 0; $d <= $limit; ++$d ) {
$start_diag = max( $value_to_add_forward + $start_forward, -$d );
$end_diag = min( $end_forward, $d );
$value_to_add_forward = 1 - $value_to_add_forward;
// compute forward furthest reaching paths
for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
if ( $k == -$d
|| ( $k < $d && $V0[$limit_min_1 + $k] < $V0[$limit_plus_1 + $k] ) ) {
$x = $V0[$limit_plus_1 + $k];
} else {
$x = $V0[$limit_min_1 + $k] + 1;
}
$absx = $snake0 = $x + $bottoml1;
$absy = $snake1 = $x - $k + $bottoml2;
while ( $absx < $maxabsx && $absy < $maxabsy && $from[$absx] === $to[$absy] ) {
++$absx;
++$absy;
}
$x = $absx -$bottoml1;
$snake2 = $absx -$snake0;
$V0[$limit + $k] = $x;
// check to see if we can cut down the diagonal range
if ( $x >= $N && $end_forward > $k - 1 ) {
$end_forward = $k - 1;
} elseif ( $absy -$bottoml2 >= $M ) {
$start_forward = $k + 1;
$value_to_add_forward = 0;
}
}
$start_diag = max( $value_to_add_backward + $start_backward, -$d );
$end_diag = min( $end_backward, $d );
$value_to_add_backward = 1 - $value_to_add_backward;
// compute backward furthest reaching paths
for ( $k = $start_diag; $k <= $end_diag; $k += 2 ) {
if ( $k == $d
|| ( $k != -$d && $V1[$limit_min_1 + $k] < $V1[$limit_plus_1 + $k] ) ) {
$x = $V1[$limit_min_1 + $k];
} else {
$x = $V1[$limit_plus_1 + $k] - 1;
}
$y = $x - $k - $delta;
$snake2 = 0;
while ( $x > 0 && $y > 0
&& $from[$x + $bottoml1_min_1] === $to[$y + $bottoml2_min_1] ) {
--$x;
--$y;
++$snake2;
}
$V1[$limit + $k] = $x;
if ( $k >= -$delta - $d && $k <= $d - $delta
&& $x <= $V0[$limit + $k + $delta] ) {
$snake0 = $bottoml1 + $x;
$snake1 = $bottoml2 + $y;
return 2 * $d;
}
// check to see if we can cut down our diagonal range
if ( $x <= 0 ) {
$start_backward = $k + 1;
$value_to_add_backward = 0;
} elseif ( $y <= 0 && $end_backward > $k - 1 ) {
$end_backward = $k - 1;
}
}
}
}
/*
* computing the true LCS is too expensive, instead find the diagonal
* with the most progress and pretend a midle snake of length 0 occurs
* there.
*/
$most_progress = self::findMostProgress( $M, $N, $limit, $V );
$snake0 = $bottoml1 + $most_progress[0];
$snake1 = $bottoml2 + $most_progress[1];
$snake2 = 0;
wfDebug( "Computing the LCS is too expensive. Using a heuristic.\n" );
$this->heuristicUsed = true;
return 5; /*
* HACK: since we didn't really finish the LCS computation
* we don't really know the length of the SES. We don't do
* anything with the result anyway, unless it's <=1. We know
* for a fact SES > 1 so 5 is as good a number as any to
* return here
*/
}
private static function findMostProgress( $M, $N, $limit, $V ) {
$delta = $N - $M;
if ( ( $M & 1 ) == ( $limit & 1 ) ) {
$forward_start_diag = max( -$M, -$limit );
} else {
$forward_start_diag = max( 1 - $M, -$limit );
}
$forward_end_diag = min( $N, $limit );
if ( ( $N & 1 ) == ( $limit & 1 ) ) {
$backward_start_diag = max( -$N, -$limit );
} else {
$backward_start_diag = max( 1 - $N, -$limit );
}
$backward_end_diag = -min( $M, $limit );
$temp = array( 0, 0, 0 );
$max_progress = array_fill( 0, ceil( max( $forward_end_diag - $forward_start_diag,
$backward_end_diag - $backward_start_diag ) / 2 ), $temp );
$num_progress = 0; // the 1st entry is current, it is initialized
// with 0s
// first search the forward diagonals
for ( $k = $forward_start_diag; $k <= $forward_end_diag; $k += 2 ) {
$x = $V[0][$limit + $k];
$y = $x - $k;
if ( $x > $N || $y > $M ) {
continue;
}
$progress = $x + $y;
if ( $progress > $max_progress[0][2] ) {
$num_progress = 0;
$max_progress[0][0] = $x;
$max_progress[0][1] = $y;
$max_progress[0][2] = $progress;
} elseif ( $progress == $max_progress[0][2] ) {
++$num_progress;
$max_progress[$num_progress][0] = $x;
$max_progress[$num_progress][1] = $y;
$max_progress[$num_progress][2] = $progress;
}
}
$max_progress_forward = true; // initially the maximum
// progress is in the forward
// direction
// now search the backward diagonals
for ( $k = $backward_start_diag; $k <= $backward_end_diag; $k += 2 ) {
$x = $V[1][$limit + $k];
$y = $x - $k - $delta;
if ( $x < 0 || $y < 0 ) {
continue;
}
$progress = $N - $x + $M - $y;
if ( $progress > $max_progress[0][2] ) {
$num_progress = 0;
$max_progress_forward = false;
$max_progress[0][0] = $x;
$max_progress[0][1] = $y;
$max_progress[0][2] = $progress;
} elseif ( $progress == $max_progress[0][2] && !$max_progress_forward ) {
++$num_progress;
$max_progress[$num_progress][0] = $x;
$max_progress[$num_progress][1] = $y;
$max_progress[$num_progress][2] = $progress;
}
}
// return the middle diagonal with maximal progress.
return $max_progress[(int)floor( $num_progress / 2 )];
}
/**
* @return mixed
*/
public function getLcsLength() {
if ( $this->heuristicUsed && !$this->lcsLengthCorrectedForHeuristic ) {
$this->lcsLengthCorrectedForHeuristic = true;
$this->length = $this->m -array_sum( $this->added );
}
return $this->length;
}
}
/**
* Alternative representation of a set of changes, by the index
* ranges that are changed.
*
* @ingroup DifferenceEngine
*/
class RangeDifference {
public $leftstart;
public $leftend;
public $leftlength;
public $rightstart;
public $rightend;
public $rightlength;
function __construct( $leftstart, $leftend, $rightstart, $rightend ) {
$this->leftstart = $leftstart;
$this->leftend = $leftend;
$this->leftlength = $leftend - $leftstart;
$this->rightstart = $rightstart;
$this->rightend = $rightend;
$this->rightlength = $rightend - $rightstart;
}
}