mirror of
https://github.com/YunoHost-Apps/rocketchat_ynh.git
synced 2024-09-03 20:16:25 +02:00
1432 lines
168 KiB
JavaScript
1432 lines
168 KiB
JavaScript
(function () {
|
|
|
|
/* Imports */
|
|
var Meteor = Package.meteor.Meteor;
|
|
var Random = Package.random.Random;
|
|
var check = Package.check.check;
|
|
var Match = Package.check.Match;
|
|
var SHA256 = Package.sha.SHA256;
|
|
var _ = Package.underscore._;
|
|
|
|
/* Package-scope variables */
|
|
var BigInteger, SRP;
|
|
|
|
(function(){
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// //
|
|
// packages/srp/biginteger.js //
|
|
// //
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
/// METEOR WRAPPER // 1
|
|
BigInteger = (function () { // 2
|
|
// 3
|
|
// 4
|
|
/// BEGIN jsbn.js // 5
|
|
// 6
|
|
/* // 7
|
|
* Copyright (c) 2003-2005 Tom Wu // 8
|
|
* All Rights Reserved. // 9
|
|
* // 10
|
|
* Permission is hereby granted, free of charge, to any person obtaining // 11
|
|
* a copy of this software and associated documentation files (the // 12
|
|
* "Software"), to deal in the Software without restriction, including // 13
|
|
* without limitation the rights to use, copy, modify, merge, publish, // 14
|
|
* distribute, sublicense, and/or sell copies of the Software, and to // 15
|
|
* permit persons to whom the Software is furnished to do so, subject to // 16
|
|
* the following conditions: // 17
|
|
* // 18
|
|
* The above copyright notice and this permission notice shall be // 19
|
|
* included in all copies or substantial portions of the Software. // 20
|
|
* // 21
|
|
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, // 22
|
|
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY // 23
|
|
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. // 24
|
|
* // 25
|
|
* IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, // 26
|
|
* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER // 27
|
|
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF // 28
|
|
* THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT // 29
|
|
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. // 30
|
|
* // 31
|
|
* In addition, the following condition applies: // 32
|
|
* // 33
|
|
* All redistributions must retain an intact copy of this copyright notice // 34
|
|
* and disclaimer. // 35
|
|
*/ // 36
|
|
// 37
|
|
// Basic JavaScript BN library - subset useful for RSA encryption. // 38
|
|
// 39
|
|
// Bits per digit // 40
|
|
var dbits; // 41
|
|
// 42
|
|
// JavaScript engine analysis // 43
|
|
var canary = 0xdeadbeefcafe; // 44
|
|
var j_lm = ((canary&0xffffff)==0xefcafe); // 45
|
|
// 46
|
|
// (public) Constructor // 47
|
|
function BigInteger(a,b,c) { // 48
|
|
if(a != null) // 49
|
|
if("number" == typeof a) this.fromNumber(a,b,c); // 50
|
|
else if(b == null && "string" != typeof a) this.fromString(a,256); // 51
|
|
else this.fromString(a,b); // 52
|
|
} // 53
|
|
// 54
|
|
// return new, unset BigInteger // 55
|
|
function nbi() { return new BigInteger(null); } // 56
|
|
// 57
|
|
// am: Compute w_j += (x*this_i), propagate carries, // 58
|
|
// c is initial carry, returns final carry. // 59
|
|
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue // 60
|
|
// We need to select the fastest one that works in this environment. // 61
|
|
// 62
|
|
// am1: use a single mult and divide to get the high bits, // 63
|
|
// max digit bits should be 26 because // 64
|
|
// max internal value = 2*dvalue^2-2*dvalue (< 2^53) // 65
|
|
function am1(i,x,w,j,c,n) { // 66
|
|
while(--n >= 0) { // 67
|
|
var v = x*this[i++]+w[j]+c; // 68
|
|
c = Math.floor(v/0x4000000); // 69
|
|
w[j++] = v&0x3ffffff; // 70
|
|
} // 71
|
|
return c; // 72
|
|
} // 73
|
|
// am2 avoids a big mult-and-extract completely. // 74
|
|
// Max digit bits should be <= 30 because we do bitwise ops // 75
|
|
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) // 76
|
|
function am2(i,x,w,j,c,n) { // 77
|
|
var xl = x&0x7fff, xh = x>>15; // 78
|
|
while(--n >= 0) { // 79
|
|
var l = this[i]&0x7fff; // 80
|
|
var h = this[i++]>>15; // 81
|
|
var m = xh*l+h*xl; // 82
|
|
l = xl*l+((m&0x7fff)<<15)+w[j]+(c&0x3fffffff); // 83
|
|
c = (l>>>30)+(m>>>15)+xh*h+(c>>>30); // 84
|
|
w[j++] = l&0x3fffffff; // 85
|
|
} // 86
|
|
return c; // 87
|
|
} // 88
|
|
// Alternately, set max digit bits to 28 since some // 89
|
|
// browsers slow down when dealing with 32-bit numbers. // 90
|
|
function am3(i,x,w,j,c,n) { // 91
|
|
var xl = x&0x3fff, xh = x>>14; // 92
|
|
while(--n >= 0) { // 93
|
|
var l = this[i]&0x3fff; // 94
|
|
var h = this[i++]>>14; // 95
|
|
var m = xh*l+h*xl; // 96
|
|
l = xl*l+((m&0x3fff)<<14)+w[j]+c; // 97
|
|
c = (l>>28)+(m>>14)+xh*h; // 98
|
|
w[j++] = l&0xfffffff; // 99
|
|
} // 100
|
|
return c; // 101
|
|
} // 102
|
|
// 103
|
|
/* XXX METEOR XXX // 104
|
|
if(j_lm && (navigator.appName == "Microsoft Internet Explorer")) { // 105
|
|
BigInteger.prototype.am = am2; // 106
|
|
dbits = 30; // 107
|
|
} // 108
|
|
else if(j_lm && (navigator.appName != "Netscape")) { // 109
|
|
BigInteger.prototype.am = am1; // 110
|
|
dbits = 26; // 111
|
|
} // 112
|
|
else // 113
|
|
*/ // 114
|
|
// 115
|
|
{ // Mozilla/Netscape seems to prefer am3 // 116
|
|
BigInteger.prototype.am = am3; // 117
|
|
dbits = 28; // 118
|
|
} // 119
|
|
// 120
|
|
BigInteger.prototype.DB = dbits; // 121
|
|
BigInteger.prototype.DM = ((1<<dbits)-1); // 122
|
|
BigInteger.prototype.DV = (1<<dbits); // 123
|
|
// 124
|
|
var BI_FP = 52; // 125
|
|
BigInteger.prototype.FV = Math.pow(2,BI_FP); // 126
|
|
BigInteger.prototype.F1 = BI_FP-dbits; // 127
|
|
BigInteger.prototype.F2 = 2*dbits-BI_FP; // 128
|
|
// 129
|
|
// Digit conversions // 130
|
|
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz"; // 131
|
|
var BI_RC = new Array(); // 132
|
|
var rr,vv; // 133
|
|
rr = "0".charCodeAt(0); // 134
|
|
for(vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv; // 135
|
|
rr = "a".charCodeAt(0); // 136
|
|
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; // 137
|
|
rr = "A".charCodeAt(0); // 138
|
|
for(vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv; // 139
|
|
// 140
|
|
function int2char(n) { return BI_RM.charAt(n); } // 141
|
|
function intAt(s,i) { // 142
|
|
var c = BI_RC[s.charCodeAt(i)]; // 143
|
|
return (c==null)?-1:c; // 144
|
|
} // 145
|
|
// 146
|
|
// (protected) copy this to r // 147
|
|
function bnpCopyTo(r) { // 148
|
|
for(var i = this.t-1; i >= 0; --i) r[i] = this[i]; // 149
|
|
r.t = this.t; // 150
|
|
r.s = this.s; // 151
|
|
} // 152
|
|
// 153
|
|
// (protected) set from integer value x, -DV <= x < DV // 154
|
|
function bnpFromInt(x) { // 155
|
|
this.t = 1; // 156
|
|
this.s = (x<0)?-1:0; // 157
|
|
if(x > 0) this[0] = x; // 158
|
|
else if(x < -1) this[0] = x+DV; // 159
|
|
else this.t = 0; // 160
|
|
} // 161
|
|
// 162
|
|
// return bigint initialized to value // 163
|
|
function nbv(i) { var r = nbi(); r.fromInt(i); return r; } // 164
|
|
// 165
|
|
// (protected) set from string and radix // 166
|
|
function bnpFromString(s,b) { // 167
|
|
var k; // 168
|
|
if(b == 16) k = 4; // 169
|
|
else if(b == 8) k = 3; // 170
|
|
else if(b == 256) k = 8; // byte array // 171
|
|
else if(b == 2) k = 1; // 172
|
|
else if(b == 32) k = 5; // 173
|
|
else if(b == 4) k = 2; // 174
|
|
else { this.fromRadix(s,b); return; } // 175
|
|
this.t = 0; // 176
|
|
this.s = 0; // 177
|
|
var i = s.length, mi = false, sh = 0; // 178
|
|
while(--i >= 0) { // 179
|
|
var x = (k==8)?s[i]&0xff:intAt(s,i); // 180
|
|
if(x < 0) { // 181
|
|
if(s.charAt(i) == "-") mi = true; // 182
|
|
continue; // 183
|
|
} // 184
|
|
mi = false; // 185
|
|
if(sh == 0) // 186
|
|
this[this.t++] = x; // 187
|
|
else if(sh+k > this.DB) { // 188
|
|
this[this.t-1] |= (x&((1<<(this.DB-sh))-1))<<sh; // 189
|
|
this[this.t++] = (x>>(this.DB-sh)); // 190
|
|
} // 191
|
|
else // 192
|
|
this[this.t-1] |= x<<sh; // 193
|
|
sh += k; // 194
|
|
if(sh >= this.DB) sh -= this.DB; // 195
|
|
} // 196
|
|
if(k == 8 && (s[0]&0x80) != 0) { // 197
|
|
this.s = -1; // 198
|
|
if(sh > 0) this[this.t-1] |= ((1<<(this.DB-sh))-1)<<sh; // 199
|
|
} // 200
|
|
this.clamp(); // 201
|
|
if(mi) BigInteger.ZERO.subTo(this,this); // 202
|
|
} // 203
|
|
// 204
|
|
// (protected) clamp off excess high words // 205
|
|
function bnpClamp() { // 206
|
|
var c = this.s&this.DM; // 207
|
|
while(this.t > 0 && this[this.t-1] == c) --this.t; // 208
|
|
} // 209
|
|
// 210
|
|
// (public) return string representation in given radix // 211
|
|
function bnToString(b) { // 212
|
|
if(this.s < 0) return "-"+this.negate().toString(b); // 213
|
|
var k; // 214
|
|
if(b == 16) k = 4; // 215
|
|
else if(b == 8) k = 3; // 216
|
|
else if(b == 2) k = 1; // 217
|
|
else if(b == 32) k = 5; // 218
|
|
else if(b == 4) k = 2; // 219
|
|
else return this.toRadix(b); // 220
|
|
var km = (1<<k)-1, d, m = false, r = "", i = this.t; // 221
|
|
var p = this.DB-(i*this.DB)%k; // 222
|
|
if(i-- > 0) { // 223
|
|
if(p < this.DB && (d = this[i]>>p) > 0) { m = true; r = int2char(d); } // 224
|
|
while(i >= 0) { // 225
|
|
if(p < k) { // 226
|
|
d = (this[i]&((1<<p)-1))<<(k-p); // 227
|
|
d |= this[--i]>>(p+=this.DB-k); // 228
|
|
} // 229
|
|
else { // 230
|
|
d = (this[i]>>(p-=k))&km; // 231
|
|
if(p <= 0) { p += this.DB; --i; } // 232
|
|
} // 233
|
|
if(d > 0) m = true; // 234
|
|
if(m) r += int2char(d); // 235
|
|
} // 236
|
|
} // 237
|
|
return m?r:"0"; // 238
|
|
} // 239
|
|
// 240
|
|
// (public) -this // 241
|
|
function bnNegate() { var r = nbi(); BigInteger.ZERO.subTo(this,r); return r; } // 242
|
|
// 243
|
|
// (public) |this| // 244
|
|
function bnAbs() { return (this.s<0)?this.negate():this; } // 245
|
|
// 246
|
|
// (public) return + if this > a, - if this < a, 0 if equal // 247
|
|
function bnCompareTo(a) { // 248
|
|
var r = this.s-a.s; // 249
|
|
if(r != 0) return r; // 250
|
|
var i = this.t; // 251
|
|
r = i-a.t; // 252
|
|
if(r != 0) return r; // 253
|
|
while(--i >= 0) if((r=this[i]-a[i]) != 0) return r; // 254
|
|
return 0; // 255
|
|
} // 256
|
|
// 257
|
|
// returns bit length of the integer x // 258
|
|
function nbits(x) { // 259
|
|
var r = 1, t; // 260
|
|
if((t=x>>>16) != 0) { x = t; r += 16; } // 261
|
|
if((t=x>>8) != 0) { x = t; r += 8; } // 262
|
|
if((t=x>>4) != 0) { x = t; r += 4; } // 263
|
|
if((t=x>>2) != 0) { x = t; r += 2; } // 264
|
|
if((t=x>>1) != 0) { x = t; r += 1; } // 265
|
|
return r; // 266
|
|
} // 267
|
|
// 268
|
|
// (public) return the number of bits in "this" // 269
|
|
function bnBitLength() { // 270
|
|
if(this.t <= 0) return 0; // 271
|
|
return this.DB*(this.t-1)+nbits(this[this.t-1]^(this.s&this.DM)); // 272
|
|
} // 273
|
|
// 274
|
|
// (protected) r = this << n*DB // 275
|
|
function bnpDLShiftTo(n,r) { // 276
|
|
var i; // 277
|
|
for(i = this.t-1; i >= 0; --i) r[i+n] = this[i]; // 278
|
|
for(i = n-1; i >= 0; --i) r[i] = 0; // 279
|
|
r.t = this.t+n; // 280
|
|
r.s = this.s; // 281
|
|
} // 282
|
|
// 283
|
|
// (protected) r = this >> n*DB // 284
|
|
function bnpDRShiftTo(n,r) { // 285
|
|
for(var i = n; i < this.t; ++i) r[i-n] = this[i]; // 286
|
|
r.t = Math.max(this.t-n,0); // 287
|
|
r.s = this.s; // 288
|
|
} // 289
|
|
// 290
|
|
// (protected) r = this << n // 291
|
|
function bnpLShiftTo(n,r) { // 292
|
|
var bs = n%this.DB; // 293
|
|
var cbs = this.DB-bs; // 294
|
|
var bm = (1<<cbs)-1; // 295
|
|
var ds = Math.floor(n/this.DB), c = (this.s<<bs)&this.DM, i; // 296
|
|
for(i = this.t-1; i >= 0; --i) { // 297
|
|
r[i+ds+1] = (this[i]>>cbs)|c; // 298
|
|
c = (this[i]&bm)<<bs; // 299
|
|
} // 300
|
|
for(i = ds-1; i >= 0; --i) r[i] = 0; // 301
|
|
r[ds] = c; // 302
|
|
r.t = this.t+ds+1; // 303
|
|
r.s = this.s; // 304
|
|
r.clamp(); // 305
|
|
} // 306
|
|
// 307
|
|
// (protected) r = this >> n // 308
|
|
function bnpRShiftTo(n,r) { // 309
|
|
r.s = this.s; // 310
|
|
var ds = Math.floor(n/this.DB); // 311
|
|
if(ds >= this.t) { r.t = 0; return; } // 312
|
|
var bs = n%this.DB; // 313
|
|
var cbs = this.DB-bs; // 314
|
|
var bm = (1<<bs)-1; // 315
|
|
r[0] = this[ds]>>bs; // 316
|
|
for(var i = ds+1; i < this.t; ++i) { // 317
|
|
r[i-ds-1] |= (this[i]&bm)<<cbs; // 318
|
|
r[i-ds] = this[i]>>bs; // 319
|
|
} // 320
|
|
if(bs > 0) r[this.t-ds-1] |= (this.s&bm)<<cbs; // 321
|
|
r.t = this.t-ds; // 322
|
|
r.clamp(); // 323
|
|
} // 324
|
|
// 325
|
|
// (protected) r = this - a // 326
|
|
function bnpSubTo(a,r) { // 327
|
|
var i = 0, c = 0, m = Math.min(a.t,this.t); // 328
|
|
while(i < m) { // 329
|
|
c += this[i]-a[i]; // 330
|
|
r[i++] = c&this.DM; // 331
|
|
c >>= this.DB; // 332
|
|
} // 333
|
|
if(a.t < this.t) { // 334
|
|
c -= a.s; // 335
|
|
while(i < this.t) { // 336
|
|
c += this[i]; // 337
|
|
r[i++] = c&this.DM; // 338
|
|
c >>= this.DB; // 339
|
|
} // 340
|
|
c += this.s; // 341
|
|
} // 342
|
|
else { // 343
|
|
c += this.s; // 344
|
|
while(i < a.t) { // 345
|
|
c -= a[i]; // 346
|
|
r[i++] = c&this.DM; // 347
|
|
c >>= this.DB; // 348
|
|
} // 349
|
|
c -= a.s; // 350
|
|
} // 351
|
|
r.s = (c<0)?-1:0; // 352
|
|
if(c < -1) r[i++] = this.DV+c; // 353
|
|
else if(c > 0) r[i++] = c; // 354
|
|
r.t = i; // 355
|
|
r.clamp(); // 356
|
|
} // 357
|
|
// 358
|
|
// (protected) r = this * a, r != this,a (HAC 14.12) // 359
|
|
// "this" should be the larger one if appropriate. // 360
|
|
function bnpMultiplyTo(a,r) { // 361
|
|
var x = this.abs(), y = a.abs(); // 362
|
|
var i = x.t; // 363
|
|
r.t = i+y.t; // 364
|
|
while(--i >= 0) r[i] = 0; // 365
|
|
for(i = 0; i < y.t; ++i) r[i+x.t] = x.am(0,y[i],r,i,0,x.t); // 366
|
|
r.s = 0; // 367
|
|
r.clamp(); // 368
|
|
if(this.s != a.s) BigInteger.ZERO.subTo(r,r); // 369
|
|
} // 370
|
|
// 371
|
|
// (protected) r = this^2, r != this (HAC 14.16) // 372
|
|
function bnpSquareTo(r) { // 373
|
|
var x = this.abs(); // 374
|
|
var i = r.t = 2*x.t; // 375
|
|
while(--i >= 0) r[i] = 0; // 376
|
|
for(i = 0; i < x.t-1; ++i) { // 377
|
|
var c = x.am(i,x[i],r,2*i,0,1); // 378
|
|
if((r[i+x.t]+=x.am(i+1,2*x[i],r,2*i+1,c,x.t-i-1)) >= x.DV) { // 379
|
|
r[i+x.t] -= x.DV; // 380
|
|
r[i+x.t+1] = 1; // 381
|
|
} // 382
|
|
} // 383
|
|
if(r.t > 0) r[r.t-1] += x.am(i,x[i],r,2*i,0,1); // 384
|
|
r.s = 0; // 385
|
|
r.clamp(); // 386
|
|
} // 387
|
|
// 388
|
|
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // 389
|
|
// r != q, this != m. q or r may be null. // 390
|
|
function bnpDivRemTo(m,q,r) { // 391
|
|
var pm = m.abs(); // 392
|
|
if(pm.t <= 0) return; // 393
|
|
var pt = this.abs(); // 394
|
|
if(pt.t < pm.t) { // 395
|
|
if(q != null) q.fromInt(0); // 396
|
|
if(r != null) this.copyTo(r); // 397
|
|
return; // 398
|
|
} // 399
|
|
if(r == null) r = nbi(); // 400
|
|
var y = nbi(), ts = this.s, ms = m.s; // 401
|
|
var nsh = this.DB-nbits(pm[pm.t-1]); // normalize modulus // 402
|
|
if(nsh > 0) { pm.lShiftTo(nsh,y); pt.lShiftTo(nsh,r); } // 403
|
|
else { pm.copyTo(y); pt.copyTo(r); } // 404
|
|
var ys = y.t; // 405
|
|
var y0 = y[ys-1]; // 406
|
|
if(y0 == 0) return; // 407
|
|
var yt = y0*(1<<this.F1)+((ys>1)?y[ys-2]>>this.F2:0); // 408
|
|
var d1 = this.FV/yt, d2 = (1<<this.F1)/yt, e = 1<<this.F2; // 409
|
|
var i = r.t, j = i-ys, t = (q==null)?nbi():q; // 410
|
|
y.dlShiftTo(j,t); // 411
|
|
if(r.compareTo(t) >= 0) { // 412
|
|
r[r.t++] = 1; // 413
|
|
r.subTo(t,r); // 414
|
|
} // 415
|
|
BigInteger.ONE.dlShiftTo(ys,t); // 416
|
|
t.subTo(y,y); // "negative" y so we can replace sub with am later // 417
|
|
while(y.t < ys) y[y.t++] = 0; // 418
|
|
while(--j >= 0) { // 419
|
|
// Estimate quotient digit // 420
|
|
var qd = (r[--i]==y0)?this.DM:Math.floor(r[i]*d1+(r[i-1]+e)*d2); // 421
|
|
if((r[i]+=y.am(0,qd,r,j,0,ys)) < qd) { // Try it out // 422
|
|
y.dlShiftTo(j,t); // 423
|
|
r.subTo(t,r); // 424
|
|
while(r[i] < --qd) r.subTo(t,r); // 425
|
|
} // 426
|
|
} // 427
|
|
if(q != null) { // 428
|
|
r.drShiftTo(ys,q); // 429
|
|
if(ts != ms) BigInteger.ZERO.subTo(q,q); // 430
|
|
} // 431
|
|
r.t = ys; // 432
|
|
r.clamp(); // 433
|
|
if(nsh > 0) r.rShiftTo(nsh,r); // Denormalize remainder // 434
|
|
if(ts < 0) BigInteger.ZERO.subTo(r,r); // 435
|
|
} // 436
|
|
// 437
|
|
// (public) this mod a // 438
|
|
function bnMod(a) { // 439
|
|
var r = nbi(); // 440
|
|
this.abs().divRemTo(a,null,r); // 441
|
|
if(this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r,r); // 442
|
|
return r; // 443
|
|
} // 444
|
|
// 445
|
|
// Modular reduction using "classic" algorithm // 446
|
|
function Classic(m) { this.m = m; } // 447
|
|
function cConvert(x) { // 448
|
|
if(x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m); // 449
|
|
else return x; // 450
|
|
} // 451
|
|
function cRevert(x) { return x; } // 452
|
|
function cReduce(x) { x.divRemTo(this.m,null,x); } // 453
|
|
function cMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } // 454
|
|
function cSqrTo(x,r) { x.squareTo(r); this.reduce(r); } // 455
|
|
// 456
|
|
Classic.prototype.convert = cConvert; // 457
|
|
Classic.prototype.revert = cRevert; // 458
|
|
Classic.prototype.reduce = cReduce; // 459
|
|
Classic.prototype.mulTo = cMulTo; // 460
|
|
Classic.prototype.sqrTo = cSqrTo; // 461
|
|
// 462
|
|
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction // 463
|
|
// justification: // 464
|
|
// xy == 1 (mod m) // 465
|
|
// xy = 1+km // 466
|
|
// xy(2-xy) = (1+km)(1-km) // 467
|
|
// x[y(2-xy)] = 1-k^2m^2 // 468
|
|
// x[y(2-xy)] == 1 (mod m^2) // 469
|
|
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // 470
|
|
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // 471
|
|
// JS multiply "overflows" differently from C/C++, so care is needed here. // 472
|
|
function bnpInvDigit() { // 473
|
|
if(this.t < 1) return 0; // 474
|
|
var x = this[0]; // 475
|
|
if((x&1) == 0) return 0; // 476
|
|
var y = x&3; // y == 1/x mod 2^2 // 477
|
|
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4 // 478
|
|
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8 // 479
|
|
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16 // 480
|
|
// last step - calculate inverse mod DV directly; // 481
|
|
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints // 482
|
|
y = (y*(2-x*y%this.DV))%this.DV; // y == 1/x mod 2^dbits // 483
|
|
// we really want the negative inverse, and -DV < y < DV // 484
|
|
return (y>0)?this.DV-y:-y; // 485
|
|
} // 486
|
|
// 487
|
|
// Montgomery reduction // 488
|
|
function Montgomery(m) { // 489
|
|
this.m = m; // 490
|
|
this.mp = m.invDigit(); // 491
|
|
this.mpl = this.mp&0x7fff; // 492
|
|
this.mph = this.mp>>15; // 493
|
|
this.um = (1<<(m.DB-15))-1; // 494
|
|
this.mt2 = 2*m.t; // 495
|
|
} // 496
|
|
// 497
|
|
// xR mod m // 498
|
|
function montConvert(x) { // 499
|
|
var r = nbi(); // 500
|
|
x.abs().dlShiftTo(this.m.t,r); // 501
|
|
r.divRemTo(this.m,null,r); // 502
|
|
if(x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r,r); // 503
|
|
return r; // 504
|
|
} // 505
|
|
// 506
|
|
// x/R mod m // 507
|
|
function montRevert(x) { // 508
|
|
var r = nbi(); // 509
|
|
x.copyTo(r); // 510
|
|
this.reduce(r); // 511
|
|
return r; // 512
|
|
} // 513
|
|
// 514
|
|
// x = x/R mod m (HAC 14.32) // 515
|
|
function montReduce(x) { // 516
|
|
while(x.t <= this.mt2) // pad x so am has enough room later // 517
|
|
x[x.t++] = 0; // 518
|
|
for(var i = 0; i < this.m.t; ++i) { // 519
|
|
// faster way of calculating u0 = x[i]*mp mod DV // 520
|
|
var j = x[i]&0x7fff; // 521
|
|
var u0 = (j*this.mpl+(((j*this.mph+(x[i]>>15)*this.mpl)&this.um)<<15))&x.DM; // 522
|
|
// use am to combine the multiply-shift-add into one call // 523
|
|
j = i+this.m.t; // 524
|
|
x[j] += this.m.am(0,u0,x,i,0,this.m.t); // 525
|
|
// propagate carry // 526
|
|
while(x[j] >= x.DV) { x[j] -= x.DV; x[++j]++; } // 527
|
|
} // 528
|
|
x.clamp(); // 529
|
|
x.drShiftTo(this.m.t,x); // 530
|
|
if(x.compareTo(this.m) >= 0) x.subTo(this.m,x); // 531
|
|
} // 532
|
|
// 533
|
|
// r = "x^2/R mod m"; x != r // 534
|
|
function montSqrTo(x,r) { x.squareTo(r); this.reduce(r); } // 535
|
|
// 536
|
|
// r = "xy/R mod m"; x,y != r // 537
|
|
function montMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } // 538
|
|
// 539
|
|
Montgomery.prototype.convert = montConvert; // 540
|
|
Montgomery.prototype.revert = montRevert; // 541
|
|
Montgomery.prototype.reduce = montReduce; // 542
|
|
Montgomery.prototype.mulTo = montMulTo; // 543
|
|
Montgomery.prototype.sqrTo = montSqrTo; // 544
|
|
// 545
|
|
// (protected) true iff this is even // 546
|
|
function bnpIsEven() { return ((this.t>0)?(this[0]&1):this.s) == 0; } // 547
|
|
// 548
|
|
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) // 549
|
|
function bnpExp(e,z) { // 550
|
|
if(e > 0xffffffff || e < 1) return BigInteger.ONE; // 551
|
|
var r = nbi(), r2 = nbi(), g = z.convert(this), i = nbits(e)-1; // 552
|
|
g.copyTo(r); // 553
|
|
while(--i >= 0) { // 554
|
|
z.sqrTo(r,r2); // 555
|
|
if((e&(1<<i)) > 0) z.mulTo(r2,g,r); // 556
|
|
else { var t = r; r = r2; r2 = t; } // 557
|
|
} // 558
|
|
return z.revert(r); // 559
|
|
} // 560
|
|
// 561
|
|
// (public) this^e % m, 0 <= e < 2^32 // 562
|
|
function bnModPowInt(e,m) { // 563
|
|
var z; // 564
|
|
if(e < 256 || m.isEven()) z = new Classic(m); else z = new Montgomery(m); // 565
|
|
return this.exp(e,z); // 566
|
|
} // 567
|
|
// 568
|
|
// protected // 569
|
|
BigInteger.prototype.copyTo = bnpCopyTo; // 570
|
|
BigInteger.prototype.fromInt = bnpFromInt; // 571
|
|
BigInteger.prototype.fromString = bnpFromString; // 572
|
|
BigInteger.prototype.clamp = bnpClamp; // 573
|
|
BigInteger.prototype.dlShiftTo = bnpDLShiftTo; // 574
|
|
BigInteger.prototype.drShiftTo = bnpDRShiftTo; // 575
|
|
BigInteger.prototype.lShiftTo = bnpLShiftTo; // 576
|
|
BigInteger.prototype.rShiftTo = bnpRShiftTo; // 577
|
|
BigInteger.prototype.subTo = bnpSubTo; // 578
|
|
BigInteger.prototype.multiplyTo = bnpMultiplyTo; // 579
|
|
BigInteger.prototype.squareTo = bnpSquareTo; // 580
|
|
BigInteger.prototype.divRemTo = bnpDivRemTo; // 581
|
|
BigInteger.prototype.invDigit = bnpInvDigit; // 582
|
|
BigInteger.prototype.isEven = bnpIsEven; // 583
|
|
BigInteger.prototype.exp = bnpExp; // 584
|
|
// 585
|
|
// public // 586
|
|
BigInteger.prototype.toString = bnToString; // 587
|
|
BigInteger.prototype.negate = bnNegate; // 588
|
|
BigInteger.prototype.abs = bnAbs; // 589
|
|
BigInteger.prototype.compareTo = bnCompareTo; // 590
|
|
BigInteger.prototype.bitLength = bnBitLength; // 591
|
|
BigInteger.prototype.mod = bnMod; // 592
|
|
BigInteger.prototype.modPowInt = bnModPowInt; // 593
|
|
// 594
|
|
// "constants" // 595
|
|
BigInteger.ZERO = nbv(0); // 596
|
|
BigInteger.ONE = nbv(1); // 597
|
|
// 598
|
|
// 599
|
|
/// BEGIN jsbn2.js // 600
|
|
// 601
|
|
/* // 602
|
|
* Copyright (c) 2003-2005 Tom Wu // 603
|
|
* All Rights Reserved. // 604
|
|
* // 605
|
|
* Permission is hereby granted, free of charge, to any person obtaining // 606
|
|
* a copy of this software and associated documentation files (the // 607
|
|
* "Software"), to deal in the Software without restriction, including // 608
|
|
* without limitation the rights to use, copy, modify, merge, publish, // 609
|
|
* distribute, sublicense, and/or sell copies of the Software, and to // 610
|
|
* permit persons to whom the Software is furnished to do so, subject to // 611
|
|
* the following conditions: // 612
|
|
* // 613
|
|
* The above copyright notice and this permission notice shall be // 614
|
|
* included in all copies or substantial portions of the Software. // 615
|
|
* // 616
|
|
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, // 617
|
|
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY // 618
|
|
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. // 619
|
|
* // 620
|
|
* IN NO EVENT SHALL TOM WU BE LIABLE FOR ANY SPECIAL, INCIDENTAL, // 621
|
|
* INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER // 622
|
|
* RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF // 623
|
|
* THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT // 624
|
|
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. // 625
|
|
* // 626
|
|
* In addition, the following condition applies: // 627
|
|
* // 628
|
|
* All redistributions must retain an intact copy of this copyright notice // 629
|
|
* and disclaimer. // 630
|
|
*/ // 631
|
|
// 632
|
|
// Extended JavaScript BN functions, required for RSA private ops. // 633
|
|
// 634
|
|
// (public) // 635
|
|
function bnClone() { var r = nbi(); this.copyTo(r); return r; } // 636
|
|
// 637
|
|
// (public) return value as integer // 638
|
|
function bnIntValue() { // 639
|
|
if(this.s < 0) { // 640
|
|
if(this.t == 1) return this[0]-this.DV; // 641
|
|
else if(this.t == 0) return -1; // 642
|
|
} // 643
|
|
else if(this.t == 1) return this[0]; // 644
|
|
else if(this.t == 0) return 0; // 645
|
|
// assumes 16 < DB < 32 // 646
|
|
return ((this[1]&((1<<(32-this.DB))-1))<<this.DB)|this[0]; // 647
|
|
} // 648
|
|
// 649
|
|
// (public) return value as byte // 650
|
|
function bnByteValue() { return (this.t==0)?this.s:(this[0]<<24)>>24; } // 651
|
|
// 652
|
|
// (public) return value as short (assumes DB>=16) // 653
|
|
function bnShortValue() { return (this.t==0)?this.s:(this[0]<<16)>>16; } // 654
|
|
// 655
|
|
// (protected) return x s.t. r^x < DV // 656
|
|
function bnpChunkSize(r) { return Math.floor(Math.LN2*this.DB/Math.log(r)); } // 657
|
|
// 658
|
|
// (public) 0 if this == 0, 1 if this > 0 // 659
|
|
function bnSigNum() { // 660
|
|
if(this.s < 0) return -1; // 661
|
|
else if(this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0; // 662
|
|
else return 1; // 663
|
|
} // 664
|
|
// 665
|
|
// (protected) convert to radix string // 666
|
|
function bnpToRadix(b) { // 667
|
|
if(b == null) b = 10; // 668
|
|
if(this.signum() == 0 || b < 2 || b > 36) return "0"; // 669
|
|
var cs = this.chunkSize(b); // 670
|
|
var a = Math.pow(b,cs); // 671
|
|
var d = nbv(a), y = nbi(), z = nbi(), r = ""; // 672
|
|
this.divRemTo(d,y,z); // 673
|
|
while(y.signum() > 0) { // 674
|
|
r = (a+z.intValue()).toString(b).substr(1) + r; // 675
|
|
y.divRemTo(d,y,z); // 676
|
|
} // 677
|
|
return z.intValue().toString(b) + r; // 678
|
|
} // 679
|
|
// 680
|
|
// (protected) convert from radix string // 681
|
|
function bnpFromRadix(s,b) { // 682
|
|
this.fromInt(0); // 683
|
|
if(b == null) b = 10; // 684
|
|
var cs = this.chunkSize(b); // 685
|
|
var d = Math.pow(b,cs), mi = false, j = 0, w = 0; // 686
|
|
for(var i = 0; i < s.length; ++i) { // 687
|
|
var x = intAt(s,i); // 688
|
|
if(x < 0) { // 689
|
|
if(s.charAt(i) == "-" && this.signum() == 0) mi = true; // 690
|
|
continue; // 691
|
|
} // 692
|
|
w = b*w+x; // 693
|
|
if(++j >= cs) { // 694
|
|
this.dMultiply(d); // 695
|
|
this.dAddOffset(w,0); // 696
|
|
j = 0; // 697
|
|
w = 0; // 698
|
|
} // 699
|
|
} // 700
|
|
if(j > 0) { // 701
|
|
this.dMultiply(Math.pow(b,j)); // 702
|
|
this.dAddOffset(w,0); // 703
|
|
} // 704
|
|
if(mi) BigInteger.ZERO.subTo(this,this); // 705
|
|
} // 706
|
|
// 707
|
|
// (protected) alternate constructor // 708
|
|
function bnpFromNumber(a,b,c) { // 709
|
|
if("number" == typeof b) { // 710
|
|
// new BigInteger(int,int,RNG) // 711
|
|
if(a < 2) this.fromInt(1); // 712
|
|
else { // 713
|
|
this.fromNumber(a,c); // 714
|
|
if(!this.testBit(a-1)) // force MSB set // 715
|
|
this.bitwiseTo(BigInteger.ONE.shiftLeft(a-1),op_or,this); // 716
|
|
if(this.isEven()) this.dAddOffset(1,0); // force odd // 717
|
|
while(!this.isProbablePrime(b)) { // 718
|
|
this.dAddOffset(2,0); // 719
|
|
if(this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a-1),this); // 720
|
|
} // 721
|
|
} // 722
|
|
} // 723
|
|
else { // 724
|
|
// new BigInteger(int,RNG) // 725
|
|
var x = new Array(), t = a&7; // 726
|
|
x.length = (a>>3)+1; // 727
|
|
b.nextBytes(x); // 728
|
|
if(t > 0) x[0] &= ((1<<t)-1); else x[0] = 0; // 729
|
|
this.fromString(x,256); // 730
|
|
} // 731
|
|
} // 732
|
|
// 733
|
|
// (public) convert to bigendian byte array // 734
|
|
function bnToByteArray() { // 735
|
|
var i = this.t, r = new Array(); // 736
|
|
r[0] = this.s; // 737
|
|
var p = this.DB-(i*this.DB)%8, d, k = 0; // 738
|
|
if(i-- > 0) { // 739
|
|
if(p < this.DB && (d = this[i]>>p) != (this.s&this.DM)>>p) // 740
|
|
r[k++] = d|(this.s<<(this.DB-p)); // 741
|
|
while(i >= 0) { // 742
|
|
if(p < 8) { // 743
|
|
d = (this[i]&((1<<p)-1))<<(8-p); // 744
|
|
d |= this[--i]>>(p+=this.DB-8); // 745
|
|
} // 746
|
|
else { // 747
|
|
d = (this[i]>>(p-=8))&0xff; // 748
|
|
if(p <= 0) { p += this.DB; --i; } // 749
|
|
} // 750
|
|
if((d&0x80) != 0) d |= -256; // 751
|
|
if(k == 0 && (this.s&0x80) != (d&0x80)) ++k; // 752
|
|
if(k > 0 || d != this.s) r[k++] = d; // 753
|
|
} // 754
|
|
} // 755
|
|
return r; // 756
|
|
} // 757
|
|
// 758
|
|
function bnEquals(a) { return(this.compareTo(a)==0); } // 759
|
|
function bnMin(a) { return(this.compareTo(a)<0)?this:a; } // 760
|
|
function bnMax(a) { return(this.compareTo(a)>0)?this:a; } // 761
|
|
// 762
|
|
// (protected) r = this op a (bitwise) // 763
|
|
function bnpBitwiseTo(a,op,r) { // 764
|
|
var i, f, m = Math.min(a.t,this.t); // 765
|
|
for(i = 0; i < m; ++i) r[i] = op(this[i],a[i]); // 766
|
|
if(a.t < this.t) { // 767
|
|
f = a.s&this.DM; // 768
|
|
for(i = m; i < this.t; ++i) r[i] = op(this[i],f); // 769
|
|
r.t = this.t; // 770
|
|
} // 771
|
|
else { // 772
|
|
f = this.s&this.DM; // 773
|
|
for(i = m; i < a.t; ++i) r[i] = op(f,a[i]); // 774
|
|
r.t = a.t; // 775
|
|
} // 776
|
|
r.s = op(this.s,a.s); // 777
|
|
r.clamp(); // 778
|
|
} // 779
|
|
// 780
|
|
// (public) this & a // 781
|
|
function op_and(x,y) { return x&y; } // 782
|
|
function bnAnd(a) { var r = nbi(); this.bitwiseTo(a,op_and,r); return r; } // 783
|
|
// 784
|
|
// (public) this | a // 785
|
|
function op_or(x,y) { return x|y; } // 786
|
|
function bnOr(a) { var r = nbi(); this.bitwiseTo(a,op_or,r); return r; } // 787
|
|
// 788
|
|
// (public) this ^ a // 789
|
|
function op_xor(x,y) { return x^y; } // 790
|
|
function bnXor(a) { var r = nbi(); this.bitwiseTo(a,op_xor,r); return r; } // 791
|
|
// 792
|
|
// (public) this & ~a // 793
|
|
function op_andnot(x,y) { return x&~y; } // 794
|
|
function bnAndNot(a) { var r = nbi(); this.bitwiseTo(a,op_andnot,r); return r; } // 795
|
|
// 796
|
|
// (public) ~this // 797
|
|
function bnNot() { // 798
|
|
var r = nbi(); // 799
|
|
for(var i = 0; i < this.t; ++i) r[i] = this.DM&~this[i]; // 800
|
|
r.t = this.t; // 801
|
|
r.s = ~this.s; // 802
|
|
return r; // 803
|
|
} // 804
|
|
// 805
|
|
// (public) this << n // 806
|
|
function bnShiftLeft(n) { // 807
|
|
var r = nbi(); // 808
|
|
if(n < 0) this.rShiftTo(-n,r); else this.lShiftTo(n,r); // 809
|
|
return r; // 810
|
|
} // 811
|
|
// 812
|
|
// (public) this >> n // 813
|
|
function bnShiftRight(n) { // 814
|
|
var r = nbi(); // 815
|
|
if(n < 0) this.lShiftTo(-n,r); else this.rShiftTo(n,r); // 816
|
|
return r; // 817
|
|
} // 818
|
|
// 819
|
|
// return index of lowest 1-bit in x, x < 2^31 // 820
|
|
function lbit(x) { // 821
|
|
if(x == 0) return -1; // 822
|
|
var r = 0; // 823
|
|
if((x&0xffff) == 0) { x >>= 16; r += 16; } // 824
|
|
if((x&0xff) == 0) { x >>= 8; r += 8; } // 825
|
|
if((x&0xf) == 0) { x >>= 4; r += 4; } // 826
|
|
if((x&3) == 0) { x >>= 2; r += 2; } // 827
|
|
if((x&1) == 0) ++r; // 828
|
|
return r; // 829
|
|
} // 830
|
|
// 831
|
|
// (public) returns index of lowest 1-bit (or -1 if none) // 832
|
|
function bnGetLowestSetBit() { // 833
|
|
for(var i = 0; i < this.t; ++i) // 834
|
|
if(this[i] != 0) return i*this.DB+lbit(this[i]); // 835
|
|
if(this.s < 0) return this.t*this.DB; // 836
|
|
return -1; // 837
|
|
} // 838
|
|
// 839
|
|
// return number of 1 bits in x // 840
|
|
function cbit(x) { // 841
|
|
var r = 0; // 842
|
|
while(x != 0) { x &= x-1; ++r; } // 843
|
|
return r; // 844
|
|
} // 845
|
|
// 846
|
|
// (public) return number of set bits // 847
|
|
function bnBitCount() { // 848
|
|
var r = 0, x = this.s&this.DM; // 849
|
|
for(var i = 0; i < this.t; ++i) r += cbit(this[i]^x); // 850
|
|
return r; // 851
|
|
} // 852
|
|
// 853
|
|
// (public) true iff nth bit is set // 854
|
|
function bnTestBit(n) { // 855
|
|
var j = Math.floor(n/this.DB); // 856
|
|
if(j >= this.t) return(this.s!=0); // 857
|
|
return((this[j]&(1<<(n%this.DB)))!=0); // 858
|
|
} // 859
|
|
// 860
|
|
// (protected) this op (1<<n) // 861
|
|
function bnpChangeBit(n,op) { // 862
|
|
var r = BigInteger.ONE.shiftLeft(n); // 863
|
|
this.bitwiseTo(r,op,r); // 864
|
|
return r; // 865
|
|
} // 866
|
|
// 867
|
|
// (public) this | (1<<n) // 868
|
|
function bnSetBit(n) { return this.changeBit(n,op_or); } // 869
|
|
// 870
|
|
// (public) this & ~(1<<n) // 871
|
|
function bnClearBit(n) { return this.changeBit(n,op_andnot); } // 872
|
|
// 873
|
|
// (public) this ^ (1<<n) // 874
|
|
function bnFlipBit(n) { return this.changeBit(n,op_xor); } // 875
|
|
// 876
|
|
// (protected) r = this + a // 877
|
|
function bnpAddTo(a,r) { // 878
|
|
var i = 0, c = 0, m = Math.min(a.t,this.t); // 879
|
|
while(i < m) { // 880
|
|
c += this[i]+a[i]; // 881
|
|
r[i++] = c&this.DM; // 882
|
|
c >>= this.DB; // 883
|
|
} // 884
|
|
if(a.t < this.t) { // 885
|
|
c += a.s; // 886
|
|
while(i < this.t) { // 887
|
|
c += this[i]; // 888
|
|
r[i++] = c&this.DM; // 889
|
|
c >>= this.DB; // 890
|
|
} // 891
|
|
c += this.s; // 892
|
|
} // 893
|
|
else { // 894
|
|
c += this.s; // 895
|
|
while(i < a.t) { // 896
|
|
c += a[i]; // 897
|
|
r[i++] = c&this.DM; // 898
|
|
c >>= this.DB; // 899
|
|
} // 900
|
|
c += a.s; // 901
|
|
} // 902
|
|
r.s = (c<0)?-1:0; // 903
|
|
if(c > 0) r[i++] = c; // 904
|
|
else if(c < -1) r[i++] = this.DV+c; // 905
|
|
r.t = i; // 906
|
|
r.clamp(); // 907
|
|
} // 908
|
|
// 909
|
|
// (public) this + a // 910
|
|
function bnAdd(a) { var r = nbi(); this.addTo(a,r); return r; } // 911
|
|
// 912
|
|
// (public) this - a // 913
|
|
function bnSubtract(a) { var r = nbi(); this.subTo(a,r); return r; } // 914
|
|
// 915
|
|
// (public) this * a // 916
|
|
function bnMultiply(a) { var r = nbi(); this.multiplyTo(a,r); return r; } // 917
|
|
// 918
|
|
// (public) this / a // 919
|
|
function bnDivide(a) { var r = nbi(); this.divRemTo(a,r,null); return r; } // 920
|
|
// 921
|
|
// (public) this % a // 922
|
|
function bnRemainder(a) { var r = nbi(); this.divRemTo(a,null,r); return r; } // 923
|
|
// 924
|
|
// (public) [this/a,this%a] // 925
|
|
function bnDivideAndRemainder(a) { // 926
|
|
var q = nbi(), r = nbi(); // 927
|
|
this.divRemTo(a,q,r); // 928
|
|
return new Array(q,r); // 929
|
|
} // 930
|
|
// 931
|
|
// (protected) this *= n, this >= 0, 1 < n < DV // 932
|
|
function bnpDMultiply(n) { // 933
|
|
this[this.t] = this.am(0,n-1,this,0,0,this.t); // 934
|
|
++this.t; // 935
|
|
this.clamp(); // 936
|
|
} // 937
|
|
// 938
|
|
// (protected) this += n << w words, this >= 0 // 939
|
|
function bnpDAddOffset(n,w) { // 940
|
|
while(this.t <= w) this[this.t++] = 0; // 941
|
|
this[w] += n; // 942
|
|
while(this[w] >= this.DV) { // 943
|
|
this[w] -= this.DV; // 944
|
|
if(++w >= this.t) this[this.t++] = 0; // 945
|
|
++this[w]; // 946
|
|
} // 947
|
|
} // 948
|
|
// 949
|
|
// A "null" reducer // 950
|
|
function NullExp() {} // 951
|
|
function nNop(x) { return x; } // 952
|
|
function nMulTo(x,y,r) { x.multiplyTo(y,r); } // 953
|
|
function nSqrTo(x,r) { x.squareTo(r); } // 954
|
|
// 955
|
|
NullExp.prototype.convert = nNop; // 956
|
|
NullExp.prototype.revert = nNop; // 957
|
|
NullExp.prototype.mulTo = nMulTo; // 958
|
|
NullExp.prototype.sqrTo = nSqrTo; // 959
|
|
// 960
|
|
// (public) this^e // 961
|
|
function bnPow(e) { return this.exp(e,new NullExp()); } // 962
|
|
// 963
|
|
// (protected) r = lower n words of "this * a", a.t <= n // 964
|
|
// "this" should be the larger one if appropriate. // 965
|
|
function bnpMultiplyLowerTo(a,n,r) { // 966
|
|
var i = Math.min(this.t+a.t,n); // 967
|
|
r.s = 0; // assumes a,this >= 0 // 968
|
|
r.t = i; // 969
|
|
while(i > 0) r[--i] = 0; // 970
|
|
var j; // 971
|
|
for(j = r.t-this.t; i < j; ++i) r[i+this.t] = this.am(0,a[i],r,i,0,this.t); // 972
|
|
for(j = Math.min(a.t,n); i < j; ++i) this.am(0,a[i],r,i,0,n-i); // 973
|
|
r.clamp(); // 974
|
|
} // 975
|
|
// 976
|
|
// (protected) r = "this * a" without lower n words, n > 0 // 977
|
|
// "this" should be the larger one if appropriate. // 978
|
|
function bnpMultiplyUpperTo(a,n,r) { // 979
|
|
--n; // 980
|
|
var i = r.t = this.t+a.t-n; // 981
|
|
r.s = 0; // assumes a,this >= 0 // 982
|
|
while(--i >= 0) r[i] = 0; // 983
|
|
for(i = Math.max(n-this.t,0); i < a.t; ++i) // 984
|
|
r[this.t+i-n] = this.am(n-i,a[i],r,0,0,this.t+i-n); // 985
|
|
r.clamp(); // 986
|
|
r.drShiftTo(1,r); // 987
|
|
} // 988
|
|
// 989
|
|
// Barrett modular reduction // 990
|
|
function Barrett(m) { // 991
|
|
// setup Barrett // 992
|
|
this.r2 = nbi(); // 993
|
|
this.q3 = nbi(); // 994
|
|
BigInteger.ONE.dlShiftTo(2*m.t,this.r2); // 995
|
|
this.mu = this.r2.divide(m); // 996
|
|
this.m = m; // 997
|
|
} // 998
|
|
// 999
|
|
function barrettConvert(x) { // 1000
|
|
if(x.s < 0 || x.t > 2*this.m.t) return x.mod(this.m); // 1001
|
|
else if(x.compareTo(this.m) < 0) return x; // 1002
|
|
else { var r = nbi(); x.copyTo(r); this.reduce(r); return r; } // 1003
|
|
} // 1004
|
|
// 1005
|
|
function barrettRevert(x) { return x; } // 1006
|
|
// 1007
|
|
// x = x mod m (HAC 14.42) // 1008
|
|
function barrettReduce(x) { // 1009
|
|
x.drShiftTo(this.m.t-1,this.r2); // 1010
|
|
if(x.t > this.m.t+1) { x.t = this.m.t+1; x.clamp(); } // 1011
|
|
this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3); // 1012
|
|
this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2); // 1013
|
|
while(x.compareTo(this.r2) < 0) x.dAddOffset(1,this.m.t+1); // 1014
|
|
x.subTo(this.r2,x); // 1015
|
|
while(x.compareTo(this.m) >= 0) x.subTo(this.m,x); // 1016
|
|
} // 1017
|
|
// 1018
|
|
// r = x^2 mod m; x != r // 1019
|
|
function barrettSqrTo(x,r) { x.squareTo(r); this.reduce(r); } // 1020
|
|
// 1021
|
|
// r = x*y mod m; x,y != r // 1022
|
|
function barrettMulTo(x,y,r) { x.multiplyTo(y,r); this.reduce(r); } // 1023
|
|
// 1024
|
|
Barrett.prototype.convert = barrettConvert; // 1025
|
|
Barrett.prototype.revert = barrettRevert; // 1026
|
|
Barrett.prototype.reduce = barrettReduce; // 1027
|
|
Barrett.prototype.mulTo = barrettMulTo; // 1028
|
|
Barrett.prototype.sqrTo = barrettSqrTo; // 1029
|
|
// 1030
|
|
// (public) this^e % m (HAC 14.85) // 1031
|
|
function bnModPow(e,m) { // 1032
|
|
var i = e.bitLength(), k, r = nbv(1), z; // 1033
|
|
if(i <= 0) return r; // 1034
|
|
else if(i < 18) k = 1; // 1035
|
|
else if(i < 48) k = 3; // 1036
|
|
else if(i < 144) k = 4; // 1037
|
|
else if(i < 768) k = 5; // 1038
|
|
else k = 6; // 1039
|
|
if(i < 8) // 1040
|
|
z = new Classic(m); // 1041
|
|
else if(m.isEven()) // 1042
|
|
z = new Barrett(m); // 1043
|
|
else // 1044
|
|
z = new Montgomery(m); // 1045
|
|
// 1046
|
|
// precomputation // 1047
|
|
var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1; // 1048
|
|
g[1] = z.convert(this); // 1049
|
|
if(k > 1) { // 1050
|
|
var g2 = nbi(); // 1051
|
|
z.sqrTo(g[1],g2); // 1052
|
|
while(n <= km) { // 1053
|
|
g[n] = nbi(); // 1054
|
|
z.mulTo(g2,g[n-2],g[n]); // 1055
|
|
n += 2; // 1056
|
|
} // 1057
|
|
} // 1058
|
|
// 1059
|
|
var j = e.t-1, w, is1 = true, r2 = nbi(), t; // 1060
|
|
i = nbits(e[j])-1; // 1061
|
|
while(j >= 0) { // 1062
|
|
if(i >= k1) w = (e[j]>>(i-k1))&km; // 1063
|
|
else { // 1064
|
|
w = (e[j]&((1<<(i+1))-1))<<(k1-i); // 1065
|
|
if(j > 0) w |= e[j-1]>>(this.DB+i-k1); // 1066
|
|
} // 1067
|
|
// 1068
|
|
n = k; // 1069
|
|
while((w&1) == 0) { w >>= 1; --n; } // 1070
|
|
if((i -= n) < 0) { i += this.DB; --j; } // 1071
|
|
if(is1) { // ret == 1, don't bother squaring or multiplying it // 1072
|
|
g[w].copyTo(r); // 1073
|
|
is1 = false; // 1074
|
|
} // 1075
|
|
else { // 1076
|
|
while(n > 1) { z.sqrTo(r,r2); z.sqrTo(r2,r); n -= 2; } // 1077
|
|
if(n > 0) z.sqrTo(r,r2); else { t = r; r = r2; r2 = t; } // 1078
|
|
z.mulTo(r2,g[w],r); // 1079
|
|
} // 1080
|
|
// 1081
|
|
while(j >= 0 && (e[j]&(1<<i)) == 0) { // 1082
|
|
z.sqrTo(r,r2); t = r; r = r2; r2 = t; // 1083
|
|
if(--i < 0) { i = this.DB-1; --j; } // 1084
|
|
} // 1085
|
|
} // 1086
|
|
return z.revert(r); // 1087
|
|
} // 1088
|
|
// 1089
|
|
// (public) gcd(this,a) (HAC 14.54) // 1090
|
|
function bnGCD(a) { // 1091
|
|
var x = (this.s<0)?this.negate():this.clone(); // 1092
|
|
var y = (a.s<0)?a.negate():a.clone(); // 1093
|
|
if(x.compareTo(y) < 0) { var t = x; x = y; y = t; } // 1094
|
|
var i = x.getLowestSetBit(), g = y.getLowestSetBit(); // 1095
|
|
if(g < 0) return x; // 1096
|
|
if(i < g) g = i; // 1097
|
|
if(g > 0) { // 1098
|
|
x.rShiftTo(g,x); // 1099
|
|
y.rShiftTo(g,y); // 1100
|
|
} // 1101
|
|
while(x.signum() > 0) { // 1102
|
|
if((i = x.getLowestSetBit()) > 0) x.rShiftTo(i,x); // 1103
|
|
if((i = y.getLowestSetBit()) > 0) y.rShiftTo(i,y); // 1104
|
|
if(x.compareTo(y) >= 0) { // 1105
|
|
x.subTo(y,x); // 1106
|
|
x.rShiftTo(1,x); // 1107
|
|
} // 1108
|
|
else { // 1109
|
|
y.subTo(x,y); // 1110
|
|
y.rShiftTo(1,y); // 1111
|
|
} // 1112
|
|
} // 1113
|
|
if(g > 0) y.lShiftTo(g,y); // 1114
|
|
return y; // 1115
|
|
} // 1116
|
|
// 1117
|
|
// (protected) this % n, n < 2^26 // 1118
|
|
function bnpModInt(n) { // 1119
|
|
if(n <= 0) return 0; // 1120
|
|
var d = this.DV%n, r = (this.s<0)?n-1:0; // 1121
|
|
if(this.t > 0) // 1122
|
|
if(d == 0) r = this[0]%n; // 1123
|
|
else for(var i = this.t-1; i >= 0; --i) r = (d*r+this[i])%n; // 1124
|
|
return r; // 1125
|
|
} // 1126
|
|
// 1127
|
|
// (public) 1/this % m (HAC 14.61) // 1128
|
|
function bnModInverse(m) { // 1129
|
|
var ac = m.isEven(); // 1130
|
|
if((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO; // 1131
|
|
var u = m.clone(), v = this.clone(); // 1132
|
|
var a = nbv(1), b = nbv(0), c = nbv(0), d = nbv(1); // 1133
|
|
while(u.signum() != 0) { // 1134
|
|
while(u.isEven()) { // 1135
|
|
u.rShiftTo(1,u); // 1136
|
|
if(ac) { // 1137
|
|
if(!a.isEven() || !b.isEven()) { a.addTo(this,a); b.subTo(m,b); } // 1138
|
|
a.rShiftTo(1,a); // 1139
|
|
} // 1140
|
|
else if(!b.isEven()) b.subTo(m,b); // 1141
|
|
b.rShiftTo(1,b); // 1142
|
|
} // 1143
|
|
while(v.isEven()) { // 1144
|
|
v.rShiftTo(1,v); // 1145
|
|
if(ac) { // 1146
|
|
if(!c.isEven() || !d.isEven()) { c.addTo(this,c); d.subTo(m,d); } // 1147
|
|
c.rShiftTo(1,c); // 1148
|
|
} // 1149
|
|
else if(!d.isEven()) d.subTo(m,d); // 1150
|
|
d.rShiftTo(1,d); // 1151
|
|
} // 1152
|
|
if(u.compareTo(v) >= 0) { // 1153
|
|
u.subTo(v,u); // 1154
|
|
if(ac) a.subTo(c,a); // 1155
|
|
b.subTo(d,b); // 1156
|
|
} // 1157
|
|
else { // 1158
|
|
v.subTo(u,v); // 1159
|
|
if(ac) c.subTo(a,c); // 1160
|
|
d.subTo(b,d); // 1161
|
|
} // 1162
|
|
} // 1163
|
|
if(v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO; // 1164
|
|
if(d.compareTo(m) >= 0) return d.subtract(m); // 1165
|
|
if(d.signum() < 0) d.addTo(m,d); else return d; // 1166
|
|
if(d.signum() < 0) return d.add(m); else return d; // 1167
|
|
} // 1168
|
|
// 1169
|
|
var lowprimes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509];
|
|
var lplim = (1<<26)/lowprimes[lowprimes.length-1]; // 1171
|
|
// 1172
|
|
// (public) test primality with certainty >= 1-.5^t // 1173
|
|
function bnIsProbablePrime(t) { // 1174
|
|
var i, x = this.abs(); // 1175
|
|
if(x.t == 1 && x[0] <= lowprimes[lowprimes.length-1]) { // 1176
|
|
for(i = 0; i < lowprimes.length; ++i) // 1177
|
|
if(x[0] == lowprimes[i]) return true; // 1178
|
|
return false; // 1179
|
|
} // 1180
|
|
if(x.isEven()) return false; // 1181
|
|
i = 1; // 1182
|
|
while(i < lowprimes.length) { // 1183
|
|
var m = lowprimes[i], j = i+1; // 1184
|
|
while(j < lowprimes.length && m < lplim) m *= lowprimes[j++]; // 1185
|
|
m = x.modInt(m); // 1186
|
|
while(i < j) if(m%lowprimes[i++] == 0) return false; // 1187
|
|
} // 1188
|
|
return x.millerRabin(t); // 1189
|
|
} // 1190
|
|
// 1191
|
|
// (protected) true if probably prime (HAC 4.24, Miller-Rabin) // 1192
|
|
function bnpMillerRabin(t) { // 1193
|
|
var n1 = this.subtract(BigInteger.ONE); // 1194
|
|
var k = n1.getLowestSetBit(); // 1195
|
|
if(k <= 0) return false; // 1196
|
|
var r = n1.shiftRight(k); // 1197
|
|
t = (t+1)>>1; // 1198
|
|
if(t > lowprimes.length) t = lowprimes.length; // 1199
|
|
var a = nbi(); // 1200
|
|
for(var i = 0; i < t; ++i) { // 1201
|
|
a.fromInt(lowprimes[i]); // 1202
|
|
var y = a.modPow(r,this); // 1203
|
|
if(y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0) { // 1204
|
|
var j = 1; // 1205
|
|
while(j++ < k && y.compareTo(n1) != 0) { // 1206
|
|
y = y.modPowInt(2,this); // 1207
|
|
if(y.compareTo(BigInteger.ONE) == 0) return false; // 1208
|
|
} // 1209
|
|
if(y.compareTo(n1) != 0) return false; // 1210
|
|
} // 1211
|
|
} // 1212
|
|
return true; // 1213
|
|
} // 1214
|
|
// 1215
|
|
// protected // 1216
|
|
BigInteger.prototype.chunkSize = bnpChunkSize; // 1217
|
|
BigInteger.prototype.toRadix = bnpToRadix; // 1218
|
|
BigInteger.prototype.fromRadix = bnpFromRadix; // 1219
|
|
BigInteger.prototype.fromNumber = bnpFromNumber; // 1220
|
|
BigInteger.prototype.bitwiseTo = bnpBitwiseTo; // 1221
|
|
BigInteger.prototype.changeBit = bnpChangeBit; // 1222
|
|
BigInteger.prototype.addTo = bnpAddTo; // 1223
|
|
BigInteger.prototype.dMultiply = bnpDMultiply; // 1224
|
|
BigInteger.prototype.dAddOffset = bnpDAddOffset; // 1225
|
|
BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo; // 1226
|
|
BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo; // 1227
|
|
BigInteger.prototype.modInt = bnpModInt; // 1228
|
|
BigInteger.prototype.millerRabin = bnpMillerRabin; // 1229
|
|
// 1230
|
|
// public // 1231
|
|
BigInteger.prototype.clone = bnClone; // 1232
|
|
BigInteger.prototype.intValue = bnIntValue; // 1233
|
|
BigInteger.prototype.byteValue = bnByteValue; // 1234
|
|
BigInteger.prototype.shortValue = bnShortValue; // 1235
|
|
BigInteger.prototype.signum = bnSigNum; // 1236
|
|
BigInteger.prototype.toByteArray = bnToByteArray; // 1237
|
|
BigInteger.prototype.equals = bnEquals; // 1238
|
|
BigInteger.prototype.min = bnMin; // 1239
|
|
BigInteger.prototype.max = bnMax; // 1240
|
|
BigInteger.prototype.and = bnAnd; // 1241
|
|
BigInteger.prototype.or = bnOr; // 1242
|
|
BigInteger.prototype.xor = bnXor; // 1243
|
|
BigInteger.prototype.andNot = bnAndNot; // 1244
|
|
BigInteger.prototype.not = bnNot; // 1245
|
|
BigInteger.prototype.shiftLeft = bnShiftLeft; // 1246
|
|
BigInteger.prototype.shiftRight = bnShiftRight; // 1247
|
|
BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit; // 1248
|
|
BigInteger.prototype.bitCount = bnBitCount; // 1249
|
|
BigInteger.prototype.testBit = bnTestBit; // 1250
|
|
BigInteger.prototype.setBit = bnSetBit; // 1251
|
|
BigInteger.prototype.clearBit = bnClearBit; // 1252
|
|
BigInteger.prototype.flipBit = bnFlipBit; // 1253
|
|
BigInteger.prototype.add = bnAdd; // 1254
|
|
BigInteger.prototype.subtract = bnSubtract; // 1255
|
|
BigInteger.prototype.multiply = bnMultiply; // 1256
|
|
BigInteger.prototype.divide = bnDivide; // 1257
|
|
BigInteger.prototype.remainder = bnRemainder; // 1258
|
|
BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder; // 1259
|
|
BigInteger.prototype.modPow = bnModPow; // 1260
|
|
BigInteger.prototype.modInverse = bnModInverse; // 1261
|
|
BigInteger.prototype.pow = bnPow; // 1262
|
|
BigInteger.prototype.gcd = bnGCD; // 1263
|
|
BigInteger.prototype.isProbablePrime = bnIsProbablePrime; // 1264
|
|
// 1265
|
|
// BigInteger interfaces not implemented in jsbn: // 1266
|
|
// 1267
|
|
// BigInteger(int signum, byte[] magnitude) // 1268
|
|
// double doubleValue() // 1269
|
|
// float floatValue() // 1270
|
|
// int hashCode() // 1271
|
|
// long longValue() // 1272
|
|
// static BigInteger valueOf(long val) // 1273
|
|
// 1274
|
|
/// METEOR WRAPPER // 1275
|
|
return BigInteger; // 1276
|
|
})(); // 1277
|
|
// 1278
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
}).call(this);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(function(){
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// //
|
|
// packages/srp/srp.js //
|
|
// //
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// This package contains just enough of the original SRP code to // 1
|
|
// support the backwards-compatibility upgrade path. // 2
|
|
// // 3
|
|
// An SRP (and possibly also accounts-srp) package should eventually be // 4
|
|
// available in Atmosphere so that users can continue to use SRP if they // 5
|
|
// want to. // 6
|
|
// 7
|
|
SRP = {}; // 8
|
|
// 9
|
|
/** // 10
|
|
* Generate a new SRP verifier. Password is the plaintext password. // 11
|
|
* // 12
|
|
* options is optional and can include: // 13
|
|
* - identity: String. The SRP username to user. Mostly this is passed // 14
|
|
* in for testing. Random UUID if not provided. // 15
|
|
* - hashedIdentityAndPassword: combined identity and password, already hashed, for the SRP to bcrypt upgrade path.
|
|
* - salt: String. A salt to use. Mostly this is passed in for // 17
|
|
* testing. Random UUID if not provided. // 18
|
|
* - SRP parameters (see _defaults and paramsFromOptions below) // 19
|
|
*/ // 20
|
|
SRP.generateVerifier = function (password, options) { // 21
|
|
var params = paramsFromOptions(options); // 22
|
|
// 23
|
|
var salt = (options && options.salt) || Random.secret(); // 24
|
|
// 25
|
|
var identity; // 26
|
|
var hashedIdentityAndPassword = options && options.hashedIdentityAndPassword; // 27
|
|
if (!hashedIdentityAndPassword) { // 28
|
|
identity = (options && options.identity) || Random.secret(); // 29
|
|
hashedIdentityAndPassword = params.hash(identity + ":" + password); // 30
|
|
} // 31
|
|
// 32
|
|
var x = params.hash(salt + hashedIdentityAndPassword); // 33
|
|
var xi = new BigInteger(x, 16); // 34
|
|
var v = params.g.modPow(xi, params.N); // 35
|
|
// 36
|
|
return { // 37
|
|
identity: identity, // 38
|
|
salt: salt, // 39
|
|
verifier: v.toString(16) // 40
|
|
}; // 41
|
|
}; // 42
|
|
// 43
|
|
// For use with check(). // 44
|
|
SRP.matchVerifier = { // 45
|
|
identity: String, // 46
|
|
salt: String, // 47
|
|
verifier: String // 48
|
|
}; // 49
|
|
// 50
|
|
// 51
|
|
/** // 52
|
|
* Default parameter values for SRP. // 53
|
|
* // 54
|
|
*/ // 55
|
|
var _defaults = { // 56
|
|
hash: function (x) { return SHA256(x).toLowerCase(); }, // 57
|
|
N: new BigInteger("EEAF0AB9ADB38DD69C33F80AFA8FC5E86072618775FF3C0B9EA2314C9C256576D674DF7496EA81D3383B4813D692C6E0E0D5D8E250B98BE48E495C1D6089DAD15DC7D7B46154D6B6CE8EF4AD69B15D4982559B297BCF1885C529F566660E57EC68EDBC3C05726CC02FD4CBF4976EAA9AFD5138FE8376435B9FC61D2FC0EB06E3", 16),
|
|
g: new BigInteger("2") // 59
|
|
}; // 60
|
|
_defaults.k = new BigInteger( // 61
|
|
_defaults.hash( // 62
|
|
_defaults.N.toString(16) + // 63
|
|
_defaults.g.toString(16)), // 64
|
|
16); // 65
|
|
// 66
|
|
/** // 67
|
|
* Process an options hash to create SRP parameters. // 68
|
|
* // 69
|
|
* Options can include: // 70
|
|
* - hash: Function. Defaults to SHA256. // 71
|
|
* - N: String or BigInteger. Defaults to 1024 bit value from RFC 5054 // 72
|
|
* - g: String or BigInteger. Defaults to 2. // 73
|
|
* - k: String or BigInteger. Defaults to hash(N, g) // 74
|
|
*/ // 75
|
|
var paramsFromOptions = function (options) { // 76
|
|
if (!options) // fast path // 77
|
|
return _defaults; // 78
|
|
// 79
|
|
var ret = _.extend({}, _defaults); // 80
|
|
// 81
|
|
_.each(['N', 'g', 'k'], function (p) { // 82
|
|
if (options[p]) { // 83
|
|
if (typeof options[p] === "string") // 84
|
|
ret[p] = new BigInteger(options[p], 16); // 85
|
|
else if (options[p] instanceof BigInteger) // 86
|
|
ret[p] = options[p]; // 87
|
|
else // 88
|
|
throw new Error("Invalid parameter: " + p); // 89
|
|
} // 90
|
|
}); // 91
|
|
// 92
|
|
if (options.hash) // 93
|
|
ret.hash = function (x) { return options.hash(x).toLowerCase(); }; // 94
|
|
// 95
|
|
if (!options.k && (options.N || options.g || options.hash)) { // 96
|
|
ret.k = ret.hash(ret.N.toString(16) + ret.g.toString(16)); // 97
|
|
} // 98
|
|
// 99
|
|
return ret; // 100
|
|
}; // 101
|
|
// 102
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
}).call(this);
|
|
|
|
|
|
/* Exports */
|
|
if (typeof Package === 'undefined') Package = {};
|
|
Package.srp = {
|
|
SRP: SRP
|
|
};
|
|
|
|
})();
|
|
|
|
//# sourceMappingURL=srp.js.map
|