Use crypto/hash computation built in browser instead of code found on the interwebz..

This commit is contained in:
Alexandre Aubin 2017-07-20 20:24:00 -04:00
parent 7bdf77492c
commit bd4dcf4da9

View file

@ -5,235 +5,66 @@
<head>
<meta charset="utf-8">
<script>
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* SHA-256 (FIPS 180-4) implementation in JavaScript (c) Chris Veness 2002-2016 */
/* MIT Licence */
/* www.movable-type.co.uk/scripts/sha256.html */
/* */
/* - see http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html */
/* http://csrc.nist.gov/groups/ST/toolkit/examples.html */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* START SHA256 CODE - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
// From https://developer.mozilla.org/en-US/docs/Web/API/SubtleCrypto/digest
async function sha256(message) {
const msgBuffer = new TextEncoder('utf-8').encode(message); // encode as UTF-8
const hashBuffer = await crypto.subtle.digest('SHA-256', msgBuffer); // hash the message
const hashArray = Array.from(new Uint8Array(hashBuffer)); // convert ArrayBuffer to Array
const hashHex = hashArray.map(b => ('00' + b.toString(16)).slice(-2)).join(''); // convert bytes to hex string
return hashHex;
}
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* END SHA256 CODE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
'use strict';
/**
* SHA-256 hash function reference implementation.
*
* This is a direct implementation of FIPS 180-4, without any optimisations. It is intended to aid
* understanding of the algorithm rather than for production use, though it could be used where
* performance is not critical.
*
* @namespace
*/
var Sha256 = {};
/**
* Generates SHA-256 hash of string.
*
* @param {string} msg - (Unicode) string to be hashed.
* @param {Object} [options]
* @param {string} [options.msgFormat=string] - Message format: 'string' for JavaScript string
* (gets converted to UTF-8 for hashing); 'hex-bytes' for string of hex bytes ('616263' ≡ 'abc') .
* @param {string} [options.outFormat=hex] - Output format: 'hex' for string of contiguous
* hex bytes; 'hex-w' for grouping hex bytes into groups of (4 byte / 8 character) words.
* @returns {string} Hash of msg as hex character string.
*/
Sha256.hash = function(msg, options) {
var defaults = { msgFormat: 'string', outFormat: 'hex' };
var opt = Object.assign(defaults, options);
// note use throughout this routine of 'n >>> 0' to coerce Number 'n' to unsigned 32-bit integer
switch (opt.msgFormat) {
default: // default is to convert string to UTF-8, as SHA only deals with byte-streams
case 'string': msg = Sha256.utf8Encode(msg); break;
case 'hex-bytes':msg = Sha256.hexBytesToString(msg); break; // mostly for running tests
}
// constants [§4.2.2]
var K = [
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 ];
// initial hash value [§5.3.3]
var H = [
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 ];
// PREPROCESSING [§6.2.1]
msg += String.fromCharCode(0x80); // add trailing '1' bit (+ 0's padding) to string [§5.1.1]
// convert string msg into 512-bit blocks (array of 16 32-bit integers) [§5.2.1]
var l = msg.length/4 + 2; // length (in 32-bit integers) of msg + 1 + appended length
var N = Math.ceil(l/16); // number of 16-integer (512-bit) blocks required to hold 'l' ints
var M = new Array(N); // message M is N×16 array of 32-bit integers
for (var i=0; i<N; i++) {
M[i] = new Array(16);
for (var j=0; j<16; j++) { // encode 4 chars per integer (64 per block), big-endian encoding
M[i][j] = (msg.charCodeAt(i*64+j*4)<<24) | (msg.charCodeAt(i*64+j*4+1)<<16) |
(msg.charCodeAt(i*64+j*4+2)<<8) | (msg.charCodeAt(i*64+j*4+3));
} // note running off the end of msg is ok 'cos bitwise ops on NaN return 0
}
// add length (in bits) into final pair of 32-bit integers (big-endian) [§5.1.1]
// note: most significant word would be (len-1)*8 >>> 32, but since JS converts
// bitwise-op args to 32 bits, we need to simulate this by arithmetic operators
var lenHi = ((msg.length-1)*8) / Math.pow(2, 32);
var lenLo = ((msg.length-1)*8) >>> 0;
M[N-1][14] = Math.floor(lenHi);
M[N-1][15] = lenLo;
// HASH COMPUTATION [§6.2.2]
for (var i=0; i<N; i++) {
var W = new Array(64);
// 1 - prepare message schedule 'W'
for (var t=0; t<16; t++) W[t] = M[i][t];
for (var t=16; t<64; t++) {
W[t] = (Sha256.σ1(W[t-2]) + W[t-7] + Sha256.σ0(W[t-15]) + W[t-16]) >>> 0;
}
// 2 - initialise working variables a, b, c, d, e, f, g, h with previous hash value
var a = H[0], b = H[1], c = H[2], d = H[3], e = H[4], f = H[5], g = H[6], h = H[7];
// 3 - main loop (note 'addition modulo 2^32')
for (var t=0; t<64; t++) {
var T1 = h + Sha256.Σ1(e) + Sha256.Ch(e, f, g) + K[t] + W[t];
var T2 = Sha256.Σ0(a) + Sha256.Maj(a, b, c);
h = g;
g = f;
f = e;
e = (d + T1) >>> 0;
d = c;
c = b;
b = a;
a = (T1 + T2) >>> 0;
}
// 4 - compute the new intermediate hash value (note '>>> 0' for 'addition modulo 2^32')
H[0] = (H[0]+a) >>> 0;
H[1] = (H[1]+b) >>> 0;
H[2] = (H[2]+c) >>> 0;
H[3] = (H[3]+d) >>> 0;
H[4] = (H[4]+e) >>> 0;
H[5] = (H[5]+f) >>> 0;
H[6] = (H[6]+g) >>> 0;
H[7] = (H[7]+h) >>> 0;
}
// convert H0..H7 to hex strings (with leading zeros)
for (var h=0; h<H.length; h++) H[h] = ('00000000'+H[h].toString(16)).slice(-8);
// concatenate H0..H7, with separator if required
var separator = opt.outFormat=='hex-w' ? ' ' : '';
return H.join(separator);
};
/**
* Rotates right (circular right shift) value x by n positions [§3.2.4].
* @private
*/
Sha256.ROTR = function(n, x) {
return (x >>> n) | (x << (32-n));
};
/**
* Logical functions [§4.1.2].
* @private
*/
Sha256.Σ0 = function(x) { return Sha256.ROTR(2, x) ^ Sha256.ROTR(13, x) ^ Sha256.ROTR(22, x); };
Sha256.Σ1 = function(x) { return Sha256.ROTR(6, x) ^ Sha256.ROTR(11, x) ^ Sha256.ROTR(25, x); };
Sha256.σ0 = function(x) { return Sha256.ROTR(7, x) ^ Sha256.ROTR(18, x) ^ (x>>>3); };
Sha256.σ1 = function(x) { return Sha256.ROTR(17, x) ^ Sha256.ROTR(19, x) ^ (x>>>10); };
Sha256.Ch = function(x, y, z) { return (x & y) ^ (~x & z); }; // 'choice'
Sha256.Maj = function(x, y, z) { return (x & y) ^ (x & z) ^ (y & z); }; // 'majority'
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/**
* Encodes multi-byte string to utf8 - monsur.hossa.in/2012/07/20/utf-8-in-javascript.html
*/
Sha256.utf8Encode = function(str) {
return unescape(encodeURIComponent(str));
};
/**
* Converts a string of a sequence of hex numbers to a string of characters (eg '616263' => 'abc').
*/
Sha256.hexBytesToString = function(hexStr) {
hexStr = hexStr.replace(' ', ''); // allow space-separated groups
var str = '';
for (var i=0; i<hexStr.length; i+=2) {
str += String.fromCharCode(parseInt(hexStr.slice(i, i+2), 16));
}
return str;
};
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
if (typeof module != 'undefined' && module.exports) module.exports = Sha256; // CommonJs export
/* END SHA256 CODE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
function sendDeleteRequest()
function sendDeleteRequest()
{
// Compute 'true' password
var domain = document.getElementById("domain").value;
var user_password = document.getElementById("password").value;
var true_password = Sha256.hash(domain+":"+user_password).substring(0,32);
// Prepare request
var url = "./domains/"+domain
var params = "recovery_password="+true_password;
var xhttp = new XMLHttpRequest();
var true_password;
sha256(domain+":"+user_password).then(function(d) {
var true_password = d;
// Prepare handler
xhttp.onreadystatechange = function()
{
if (xhttp.readyState == 4)
// Prepare request
var url = "./domains/"+domain
var params = "recovery_password="+true_password;
var xhttp = new XMLHttpRequest();
// Prepare handler
xhttp.onreadystatechange = function()
{
if (xhttp.status == 200)
if (xhttp.readyState == 4)
{
document.getElementById("debug").innerHTML = xhttp.responseText;
if (xhttp.status == 200)
{
document.getElementById("debug").innerHTML = xhttp.responseText;
}
else
{
document.getElementById("debug").innerHTML = "Error ? " + xhttp.responseText;
}
}
else
{
document.getElementById("debug").innerHTML = "Error ? " + xhttp.responseText;
document.getElementById("debug").innerHTML = "Sending request...";
}
}
else
{
document.getElementById("debug").innerHTML = "Sending request...";
}
};
// Actually send the request
xhttp.open("DELETE", url, true);
xhttp.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
xhttp.send(params);
};
// Actually send the request
xhttp.open("DELETE", url, true);
xhttp.setRequestHeader("Content-type", "application/x-www-form-urlencoded");
xhttp.send(params);
})
}
</script>
</head>
<body>
<form>
Domain to delete:<br>
<input type="text" id="domain"><br>
Password:<br>